
Solving large systems on HECToR using the
2-Lagrange multiplier methods

Anastasios Karangelis1, Sébastien Loisel1, and Chris Maynard2

1 Introduction

We consider the model problem,

−∆ ũ= f̃ in Ω and ũ= 0 on ∂Ω . (1)

In order to solve the problem numerically we discretize it bysome suitable
method1 and as a result we get the system,

Au= f , (2)

whereA is a large symmetric and positive definite sparse matrix,f is the load vector
andu is the desired discrete solution of our problem. Note that weuse the nota-
tion ũ = ũ(x) for the solution ˜u ∈ H1

0(Ω) andu for corresponding finite element
coefficient vector.

We decompose our square model domainΩ into nonoverlapping rectangular sub-
domainsΩ1, . . . ,Ωp and we define the artificial interfaceΓ = Ω ∩ (

⋃p
i=1 ∂Ωi), such

thatΩ = Γ ∪
(⋃p

k=1 Ωk
)

with disjoint unions. Although our numerical experiments
are on a square, the analysis in [3, 5] applies to more general“shape-regular” do-
main decompositions and grids such as described in [8].

The local Robin subproblems are,

−∆ ũk = f̃ in Ωk,
ũk = 0 on∂Ωk∩∂Ω ,

(a+Dν)ũk = λ̃k on ∂Ωk∩Γ ;
(3)

wherea > 0 is the Robin parameter,k = 1, . . . , p andDν denotes the directional
derivative in the direction of the unit outwards normal vector ν of ∂Ω , andλ̃k is the
Robin data imposed on the “artificial interface”∂Ωk∩Γ .

We now discretize system (3) using the finite element method.This leads to linear
systems of the form,

[

AIIk AIΓ k

AΓ Ik AΓ Γ k+aI

][

uIk

uΓ k

]

=

[

fIk
fΓ k

]

+

[

0

λk

]

. (4)

1 Dept. of Mathematics, Heriot-Watt University, Edinburgh EH144AS, United Kingdom, e-mail:
{ak411}{S.Loisel}@hw.ac.uk ·2 EPCC, University of Edinburgh, Edinburgh EH9 3JZ,
United Kingdom, e-mail:c.maynard@ed.ac.uk and Met Office, FitzRoy Road, Exeter, EX1
3PB, e-mail:christopher.maynard@metoffice.gov.uk

1 In general this could be by finite elements or finite differences.

1

2 Anastasios Karangelis, Sébastien Loisel, and Chris Maynard

Here, the subscriptI denotes nodes that are Interior toΩk, while the subscriptΓ
denotes nodes onΓ ∩ ∂Ωk; this notation is consistent with existing literature, see
[5], [8]. Using a Schur complement, we eliminate the interior nodes of equation(4)
to get the equivalent system,

(S+aI)uG = g+λ , (5)

whereS= diag{S1, . . . ,Sp} with symmetric and semidefinite Schur complements
Sk = AΓ Γ k −AΓ IkA−1

IIk AIΓ k; the column vectoruG = [uT
Γ 1, . . . ,u

T
Γ p]

T is the multi-
valued trace (with one value per interface vertex per adjacent subdomain), the Robin
data areλ = [λ T

1 , . . . ,λ T
p]

T and the “accumulated fluxes” aregk = fΓ k−AΓ IkA−1
IIk fIk.

We define the scaled “Robin-to-Dirichlet” mapQ = diag{Q1, . . . ,Qp}, where
Qk = a(Sk+aIk)−1 and(5) can be rewritten as,

auG = Q(g+λ). (6)

The multi-valued traceuG can be interpreted as the multi-valued trace of a finite
element function ˜u(x) which has jump discontinuities alongΓ . For each vertexx j ∈
Γ on the interface, we definemj to be the number of subdomains adjacent tox j .
A vertex withmj = 2 is called a regular interface point while a vertex withmj > 2
is called a cross point. The solution of (1) is continuous andso we must impose
continuity onũ(x) (or equivalently, on its finite element trace vectoruG). To that
end, we defineK to be the orthogonal projection matrix which averages the function
values for each interface vertexx j ; note that the range ofK is precisely the space of
continuous many-sided traces. Hence,uG is continuous if and only if,

KuG = uG. (7)

Additionally we require the “fluxes” to match which is equivalent to

K(SuG) = Kg. (8)

1.1 Obtaining the S2LM and 2LM systems

From (5) and (7) we get that,

KQ(λ +g) = Q(λ +g), (9)

and from (8) we get,
K(g+λ −Q(g+λ)) = Kg. (10)

We add (9) and (10) to get thesymmetric 2-Lagrange multiplier system
(S2LM) ,

(Q−K)λ =−Qg. (11)

2LM on HECToR 3

Multiplying both sides of(11) on the left by(I − 2K), we get the corresponding
nonsymmetric 2-Lagrange system (2LM),

(I −2K)(Q−K)λ =−(I −2K)Qg. (12)

We now briefly summarize some known results about the 2-Lagrange methods
and refer to [4], [5], [3] for details.

Theorem 1. We define E to be the orthogonal projection onto the kernel of S. As-
sume that‖EK‖< 1. Then(11) is equivalent to(2).

Theorem 2. [4] The nonsymmetric 2-Lagrange system,(I −2K)(Q−K) is an Opti-
mised Schwarz Method (at least for two subdomains)

The 2-Lagrange multiplier methods also have a coarse grid preconditioner,

P= I −EKE, (13)

leading to the 2-level methods,

P−1(Q−K)λ = −P−1Qg, (14)

P−1(I −2K)(Q−K)λ = −P−1(I −2K)Qg. (15)

Theorem 3. The optimized Robin parameter a=
√

sminsmax, where smin and smax

are the extremal eigenvalues of S. Moreover,
The condition number for the 1-level methods is O(h−1/2H−3/2)
The condition number for the 2-level methods is O(H/h)1/2

2 Implementation of symmetric and nonsymmetric 2-Lagrange
multiplier and large scale experiments on HECToR

The numerical experiments were run on HECToR, a Cray XE6 with2816 compute
nodes each comprising of two 16-core AMD Opeteron Interlagos processors. Each
of the 16-core socket is coupled with a Cray Gemini routing and communications
chip.

2.1 Implementation

We have implemented the symmetric and nonsymmetric 2LM methods in C using
the PETSc library [1]. We implemented three matricesK, Q and the coarse grid
preconditionerP. The matricesP,Q are implemented as PETSc shell matrices while
theK matrix is assembled into aseqaijmatrix. In other words, the matrixK is as-
sembled into PETSc’s parallel compressed row storage sparse matrix format, while

4 Anastasios Karangelis, Sébastien Loisel, and Chris Maynard

the matricesP andQ are not assembled but instead a matrix-vector multiplication
routine is provided to PETSc. The matricesP andQ are not assembled because they
are not sparse.

We use a PETSc parallel Krylov space solver on (14) or (15) as an “outer iter-
ation”. Each step of the outer iteration requires multiplying a given vector by the
matricesP,Q,K. The matrix-vector productKλ is a straightforward sparse matrix-
dense vector product. The matrix-vector productQλ requires solving subdomain
problems as per (4). These subdomain problems can in principle become large.
Thus, (4) is solved using a PETSc sequential Krylov space solver (ie. a single-
processor solver) on (4); this is an “inner iteration” whichoccurs at each step of
the outer iteration. Hence the overall algorithm has an inner-outer iteration struc-
ture. In our test implementation, we use a finite difference implementation with a
square domain and rectangular subdomains, with one domain assigned per MPI task
with affinity to a single core.

2.1.1 The matrix K

The solutionλ to the linear systems,(11) or (12) is a multi-valued trace, with one
function value per artificial interface point per subdomain. In PETSc, the rows of
λ are distributed such that the indices of the same domain are assigned to a single
processor,

λ =

λ1

λ2
...
λp

.

Each entry inλ corresponds to an artificial interface grid point. When two ormore
subdomains are adjacent, then some entries ofλ correspond to the same artificial
interface point.

Each processor lists the physical grid points on its artificial interface; this infor-
mation is shared with neighboring subdomains using MPI explicitly. When solv-
ing subdomain problems, we work with small-dimensional local vectors. The Robin

dataλ j on subdomainΩ j has lengthnΓ j ; we writeλ j = (λ (j)
i)

nΓ j
i=1. Mapping from the

“local index” i to a “global offset” is achieved with the functionFj(i) = i+∑k< j nΓ k.
The size of the matrixK is ∑p

k=1nΓ k. Given this information, each processor is able
to assemble its own rows ofK.

2.1.2 The matrix Q

We begin by showing that the matrix-vector productλk 7→ Qkλk can be computed
by solving a local sparse problem. Settingf = 0 (and henceg = 0) in (4) and (5)
shows thatQkλk = auΓ k, whereuΓ k is defined by,

2LM on HECToR 5

[

AIIk AIΓ k

AΓ Ik AΓ Γ k+aI

][

uIk

uΓ k

]

=

[

0

λk

]

. (16)

Thus, in order to calculate the matrix-vector productQλ , each processor solves the
Robin local problem (16) and outputsQkλk = auΓ k.

The local problem (16) can in principle be solved using eg. a Cholesky decom-
position. However, we found that using a Cholesky decomposition leads to large
amounts of fill-in and poor performance. Thus, we solve the local problem(16) us-
ing the Conjugate Gradient method with relative convergence tolerance 1e-10 and
absolute convergence tolerance 1e-9. For the local problem(16), we use the incom-
plete Cholesky ICC(ℓ) preconditioner [2]. The incomplete Cholesky preconditioner
is a compromise between higher fill-in (leading in the limit to a direct solver) and
lower fill-in (leading in the limit to a diagonal preconditioner). We found that a
“factor level” ℓ= 10 gives better overall performance for our problem sizes.

2.1.3 The preconditioner P

The coarse grid preconditioner matrixP defined in(13) is in principle an enor-
mous parallel matrix. Nevertheless, we will describe an efficient way to compute the
matrix-vector productλ 7→P−1λ efficiently on a single processor (with some global
communication). Forj = 1, . . . , p we denotenΓ j the number of vertices on the artifi-
cial interface∂Ω j ∩Γ and we define the matrixJ := diag(1√

nΓ 1
1nΓ 1, . . . ,

1√nΓ p
1nΓ p)

where1 j denotes thejth dimensional column vector of ones. The columns ofJ span
the “coarse space” of piecewise constant functions, which are constant on each local
artificial interfaceΓk = ∂Ωk∩Γ . The coarse space for the preconditioner (13) is the
kernel ofS, which is contained in the column span ofJ. Thus, we defineE := JJT

and,

P−1 := (I −EKE)−1 = I −JJT −J(

L
︷ ︸︸ ︷

JTKJ− I)−1JT .

Note that althoughP−1 is dense, we can computeλ 7→P−1λ efficiently, in a matrix-
free way, via the formulaP−1λ = λ −J(JTλ)−J(L−1(JTλ)).

Given the assembled parallel sparse matrixJ and its transposeJT and the assem-
bled (sparse) local matrixL, the algorithm for computing the matrix-vector product
λ 7→ P−1λ in a matrix-free way is as follows:

1. Givenλ , compute thep-dimensional “coarse” vectorλc = JTλ and collect its
entries on a single processor as a sequential vector.

2. Defineuc by solving the local, sparse linear problemLuc = λc.
3. OutputP−1λ = λ −Jλc−Juc. Note that multiplication byJ involves broadcast-

ing the small local vectorsλc anduc to large parallel vectorsJλc andJuc.

6 Anastasios Karangelis, Sébastien Loisel, and Chris Maynard

Table 1: Iteration counts for S2LM.

Domain size
Procs. 1002 3002 10002 30002

64 216 409 952 2472
256 173 316 782 1753
1024 144 220 411 1090
4096 - - 301 665

Table 2: Iteration counts for 2LM.

Domain size
Procs. 1002 3002 10002 30002 100002

64 30 58 114 229 -
256 37 35 72 135 -
1024 47 44 42 76 -
4096 - - 53 50 82

2.1.4 The outer solve

The implementations of the shell matricesP andQ and the assembly of the sparse
matrix K have been described. Building on these base implementations, we fur-
ther form the shell matricesλ 7→ (Q− K)λ (implemented asQminKmul) and
λ 7→ (I −2K)(Q−K)λ (implemented asImin2KQminKmul). The PETSc library
enables us to use a variety of different solvers. For the outer iteration we experi-
mented with the Generalized Minimal ResidualKSPGMRES and the Flexible Gen-
eralised Minimal Residual methodKSPFGMRES on shell matricesQminKmul and
Imin2KmulQminK, with the preconditionerP. For theKSPFGMRES solver we set
the relative convergence tolerance 1e− 7 and the absolute convergence tolerance
1e−6.

Recall that GMRES is an iterative method that computes the approximate solu-
tion xk ∈ x0+span{r0,Ar0, . . .Akr0} which minimizes the residual norm‖b−Axk‖2.
The efficient implementation of the least-squares problem relies on the identity

AVk =Vk+1H̃k, (17)

whereVk is an orthonormal basis of the Krylov space andH̃k. is an upper Hessenberg
matrix; cf. [7] for details. The Flexible GMRES algorithm[6] replaces(17) by,

AZm =Vk+1H̃k, (18)

and allows one to vary the preconditioner at each iteration,which required testing
since our matrix-vector products are inexact.

2.1.5 Experiments at large scale

Results for the iteration counts of the S2LM and 2LM methods are presented. In
both cases the Flexible GMRES algorithm for the outer solverand the Conjugate
Gradient algorithm for the inner solver were used. The preconditioner for the outer
solve is the shell matrixP, while the preconditioner for the inner solve is the in-
complete Cholesky ICC(10) of (16). The other parameters forthe solvers have been
specified in sections 2.1.2 and 2.1.4.

2LM on HECToR 7

10
0

10
1

10
2

10
3

10
2

10
3

H/h

Ite
ra

tio
ns

S2LM

O(H/h)1/2

Fig. 1: Scaling of S2LM.

10
0

10
1

10
2

10
3

10
2

H/h

Ite
ra

tio
ns

2LM

O(H/h)1/3

O(H/h)1/2

Fig. 2: Scaling of 2LM.

The implementation used here is limited to a square domain intwo dimensions
using a finite difference discretization. This choice was made entirely for the sim-
plicity of implementation. The domains vary from 1002 to 100002 grid points (and
hence the largest problem has 108 degrees of freedom). These domains are parti-
tioned into 64 to 4096 subdomains, which again is limited to asquare number. This
domain decomposition is mapped to the MPI decomposition on HECToR.

The symmetric(11) and nonsymmetric systems(12) are solved, with tolerances
as in section 2.1.4; the outer iteration counts are reported in Tables 1 and 2. The
computational cost per outer iteration for a fixed domain andsubdomain is constant.
The inner iterations are not reported as the ICC preconditioner is used for simplicity
rather than the optimal multigrid which would be used as firstchoice in a production
implementation. In addition to these raw iteration counts,we also plot the scaling of
the methods against the ratioH/h in Figs. 1 and 2.

The S2LM performance is well explained by the condition number estimate of
Theorem 3. Indeed, the S2LM matrix is symmetric and indefinite and for such sys-
tems, one can show that the number of iterations is bounded bya quantity propor-
tional to the condition number. This bound is only sharp whenthe spectrum of the
matrix is perfectly symmetric about the origin. We find that some of our smaller
systems perform slightly better than this theoretical estimate.

The 2LM performance appears to be betweenO(H/h)1/3 andO(H/h)1/2. The
2LM matrix is nonsymmetric. For nonsymmetric matrices, thecondition number
does not necessarily predict the performance of the GMRES algorithm. However,
in our case, we find that the condition number explains well the performance of the
algorithm and that we further get “Krylov acceleration” – the performance may be
almost as good asO(H/h)1/3.

8 Anastasios Karangelis, Sébastien Loisel, and Chris Maynard

3 Conclusions

We have provided a large-scale implementation of the 2-Lagrange multiplier meth-
ods with cross points and a coarse grid correction, which we have tested on the
HECToR supercomputer. Our experiments confirm the good scaling properties of
the 2-Lagrange multiplier methods. In the future, we intendto improve our imple-
mentation to further explore the scaling to the largest systems.

Acknowledgements We gratefully acknowledge the support of the Centre for Numerical Algo-
rithms and Intelligent Software (EPSRC EP/G036136/1). Thiswork made use of the facilities
of HECToR, the UK’s national high-performance computing service, which is provided by UoE
HPCx Ltd. at the University of Edinburgh, Cray Inc and NAG Ltd., and funded by the Office of
Science and Technology through EPSRC’s High End Computing Programme.

References

1. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes,
L.C., Smith, B.F., Zhang, H.: PETSc Web page (2012). Http://www.mcs.anl.gov/petsc

2. Chan, T.F., Van Der Vorst, H.A.: Approximate and incomplete factorizations. Parallel Numeri-
cal Algorithms, ICASE/LaRC Interdisciplinary Series in Science and Engeneering pp. 167–202
(1997)

3. Drury, S.W., Loisel, S.: Sharp condition number estimates forthe symmetric 2-lagrange multi-
plier method. DD20 proceedings (2011)

4. Farhat, C., Roux, F.X.: A method of finite element tearing andinterconnecting and its parallel
solution algorithm. Internat. J. Numer. Methods Engrg32, pp. 1205–1227 (1991)

5. Loisel, S.: Condition number estimates for the nonoverlapping optimized schwarz method and
the 2-lagrange multiplier method for general domains and cross points. To appear in SIAM
Journal on Numerical Analysis (2013)

6. Saad, Y.: A flexible inner-outer preconditioned gmres algorithm. SIAM Journal on Scientific
Computing14, 461–469 (1993)

7. Saad, Y., Schultz, M.: GMRES: A generalized minimal residualalgorithm for solving non-
symmetric linear systems. SIAM Journal on scientific and statistical computing 7(3), 856–869
(1986)

8. Toselli, A., Widlund, O.B.: Domain Decomposition Methods – Algorithms and Theory, vol.
volume 34 of Springer Series in Computational Mathematics. Springer Berlin Heidelberg
(2005)

