Solving large systems on HECToR using the
2-L agrange multiplier methods

Anastasios KarangefisSebastien Loisé| and Chris Maynard

1 Introduction

We consider the model problem,
—AlG=finQandi=00ndQ. 1)

In order to solve the problem numerically we discretize itdpme suitable
method and as a result we get the system,

Au= f, 2

whereAis a large symmetric and positive definite sparse matrig,the load vector
andu is the desired discrete solution of our problem. Note thatuse the nota-
tion G = (i(x) for the solutionu™e H}(Q) andu for corresponding finite element
coefficient vector.

We decompose our square model donfaiimto nonoverlapping rectangular sub-
domainsQ;,..., Q, and we define the artificial interface= Q N (UP_, Q)), such
thatQ =TI u (UE=1 Qk) with disjoint unions. Although our numerical experiments
are on a square, the analysis in [3, 5] applies to more gefshape-regular” do-
main decompositions and grids such as described in [8].

The local Robin subproblems are,

Al = f~ in Qy,
Gc=0 0NN oL, 3)
(a+Dy)lx=AkonoxnNr;

wherea > 0 is the Robin parametek,= 1,...,p andD, denotes the directional
derivative in the direction of the unit outwards normal w&at of dQ, andA is the
Robin data imposed on the “artificial interfac@Q N T .

We now discretize system (3) using the finite element methbid.leads to linear

systems of the form,
Uik fik 0
= + . 4
Ul'k‘| [frk] [Akl)

1 Dept. of Mathematics, Heriot-Watt University, Edinburgh EHIAS, United Kingdom, e-mail:
{ak411}{S. Loi sel } @w. ac. uk -2 EPCC, University of Edinburgh, Edinburgh EH9 3JZ,
United Kingdom, e-mailc. maynar d@d. ac. uk and Met Office, FitzRoy Road, Exeter, EX1
3PB, e-mailchri st opher . maynar d@ret of fi ce. gov. uk

Ak Airk
Arik Arrk+al

1In general this could be by finite elements or finite difference

2 Anastasios KarangelisgBastien Loisel, and Chris Maynard

Here, the subscript denotes nodes that are Interior @, while the subscripf”
denotes nodes oh N dQ; this notation is consistent with existing literature, see
[5], [8]. Using a Schur complement, we eliminate the interiodes of equatiof¥)

to get the equivalent system,

(S+al)us=9g+A, (5)

whereS = diag{Sy,...,Sp} with symmetric and semidefinite Schur complements
S = Arrk — ArikArAirk; the column vectoug = [Ufy, ..., uf JT is the multi-
valued trace (with one value per interface vertex per adjsidomain), the Robin
dataarel = [A[,...,A;]" and the “accumulated fluxes” age = fric—ArikAye fik-

We define the scaled “Robin-to-Dirichlet” map = diag{Q,...,Qp}, where
Q« = a(Sc+al) "t and(5) can be rewritten as,

aug = Q(g+A). (6)

The multi-valued traceig can be interpreted as the multi-valued trace of a finite
element functionu(x) which has jump discontinuities alorig For each vertex; €
" on the interface, we defin@; to be the number of subdomains adjacenkjto
A vertex withm; = 2 is called a regular interface point while a vertex with > 2
is called a cross point. The solution of (1) is continuous aadve must impose
continuity onu(x) (or equivalently, on its finite element trace vectgy). To that
end, we defin& to be the orthogonal projection matrix which averages thetion
values for each interface vertgy note that the range f is precisely the space of
continuous many-sided traces. Henggjs continuous if and only if,

Kug = Ug. (7)
Additionally we require the “fluxes” to match which is equiat to

K(Sws) = Kg. (8)

1.1 Obtaining the S2LM and 2LM systems

From (5) and (7) we get that,

KQ(A +9) =Q(A +09), ©)
and from (8) we get,
K(g+A —Q(g+A)) =Kag. (10)

We add (9) and (10) to get thesymmetric 2-Lagrange multiplier system
(S2LM)
(Q—K)A =-Qg (11)

2LM on HECToR 3

Multiplying both sides of(11) on the left by(l — 2K), we get the corresponding
nonsymmetric 2-L agrange system (2LM),

(I -2K)(Q—K)A = —(1 — 2K)Qg. (12)

We now briefly summarize some known results about the 2-lnagranethods
and refer to [4], [5], [3] for detalils.

Theorem 1. We define E to be the orthogonal projection onto the kernel @{sS
sume that|EK|| < 1. Then(11) is equivalent tq(2).

Theorem 2. [4] The nonsymmetric 2-Lagrange systém; 2K)(Q —K) is an Opti-
mised Schwarz Method (at least for two subdomains)

The 2-Lagrange multiplier methods also have a coarse geiconditioner,
P=1-EKE, (13)
leading to the 2-level methods,

P4Q-K)

-K)A = -P'Qg, (14)
P11 —2K)(Q—K)

A
A =—P 11 -2K)Qg (15)
Theorem 3. The optimized Robin parameter=a,/SninSmax Where gin and $nax
are the extremal eigenvalues of S. Moreover,

The condition number for the 1-level methods (§G/2H~3%/2)

The condition number for the 2-level methods {#i@h)1/2

2 Implementation of symmetric and nonsymmetric 2-L agrange
multiplier and large scale experimentson HECToR

The numerical experiments were run on HECToR, a Cray XE6 28th6 compute

nodes each comprising of two 16-core AMD Opeteron Intedggocessors. Each
of the 16-core socket is coupled with a Cray Gemini routind a@ammunications

chip.

2.1 Implementation

We have implemented the symmetric and nonsymmetric 2LM austfin C using
the PETSc library [1]. We implemented three matriéesQ and the coarse grid
preconditioneP. The matrice®,Q are implemented as PETSc shell matrices while
theK matrix is assembled intoseqai j matrix. In other words, the matriX is as-
sembled into PETSc's parallel compressed row storageespaatrix format, while

4 Anastasios KarangelisgBastien Loisel, and Chris Maynard

the matriced® andQ are not assembled but instead a matrix-vector multipboati
routine is provided to PETSc. The matridgandQ are not assembled because they
are not sparse.

We use a PETSc parallel Krylov space solver on (14) or (15nd®ater iter-
ation”. Each step of the outer iteration requires multipyyia given vector by the
matricesP, Q,K. The matrix-vector produdfA is a straightforward sparse matrix-
dense vector product. The matrix-vector prod@dt requires solving subdomain
problems as per (4). These subdomain problems can in plénbgcome large.
Thus, (4) is solved using a PETSc sequential Krylov spaceesdle. a single-
processor solver) on (4); this is an “inner iteration” whiotcurs at each step of
the outer iteration. Hence the overall algorithm has anriouger iteration struc-
ture. In our test implementation, we use a finite differemoplementation with a
square domain and rectangular subdomains, with one dorssigreed per MPI task
with affinity to a single core.

2.1.1 Thematrix K

The solution) to the linear systemg11) or (12) is a multi-valued trace, with one
function value per artificial interface point per subdomamPETSc, the rows of
A are distributed such that the indices of the same domainssigreed to a single
processor,

A

Az

Ap

Each entry im corresponds to an artificial interface grid point. When twonare
subdomains are adjacent, then some entriek obrrespond to the same artificial
interface point.

Each processor lists the physical grid points on its aréficiterface; this infor-
mation is shared with neighboring subdomains using MPlieitil When solv-
ing subdomain problems, we work with small-dimensionahla@ctors. The Robin
dataAj on subdomair2; has lengthnr j; we writeA; = (A“))inii. Mapping from the

[
“local index”i to a “global offset” is achieved with the functidf(i) =i+ ¥ Nrk.
The size of the matriX is ¥ _, nr. Given this information, each processor is able

to assemble its own rows &.

2.1.2 Thematrix Q

We begin by showing that the matrix-vector prodagt— QkAx can be computed
by solving a local sparse problem. Settifig= 0 (and henceg = 0) in (4) and (5)
shows thaQyAx = aurk, whereury is defined by,

2LM on HECToR 5

Uik 0 (16)
Urk Ak

Thus, in order to calculate the matrix-vector prod@at, each processor solves the
Robin local problem (16) and outpu@Ax = aur.

The local problem (16) can in principle be solved using eghal€sky decom-
position. However, we found that using a Cholesky decontjposleads to large
amounts of fill-in and poor performance. Thus, we solve ticallproblem(16) us-
ing the Conjugate Gradient method with relative convergenterance 1le-10 and
absolute convergence tolerance 1e-9. For the local prodémwe use the incom-
plete Cholesky ICQ{) preconditioner [2]. The incomplete Cholesky precondi¢io
is a compromise between higher fill-in (leading in the linaitat direct solver) and
lower fill-in (leading in the limit to a diagonal preconditier). We found that a
“factor level” ¢ = 10 gives better overall performance for our problem sizes.

Ak Ark
Arik Arrk+al

2.1.3 The preconditioner P

The coarse grid preconditioner matfxdefined in(13) is in principle an enor-
mous parallel matrix. Nevertheless, we will describe armieifit way to compute the
matrix-vector produch — P~1A efficiently on a single processor (with some global
communication). Foj = 1,..., pwe denoter ; the number of vertices on the artifi-
cial interfaced Qj N I™ and we define the matrix:= diag(ﬁlnrl, e ﬁlnrp)
wherel; denotes thgth dimensional column vector of ones. The columng span

the “coarse space” of piecewise constant functions, whieft@nstant on each local
artificial interfacely = 0QxN I . The coarse space for the preconditioner (13) is the
kernel of S, which is contained in the column spanbfThus, we defin€& := JJ"

and,
L

—_——
PLli=(1—EKE)1=1-33"-J0"ka—1"1J".

Note that althoug® ! is dense, we can compute— P~1A efficiently, in a matrix-
free way, via the formul® A =A —J(JTA) —J(L71(ITA)).

Given the assembled parallel sparse matrand its transpos&’ and the assem-
bled (sparse) local matrix, the algorithm for computing the matrix-vector product
A — P~1) in a matrix-free way is as follows:

1. GivenA, compute thep-dimensional “coarse” vectok; = JTA and collect its
entries on a single processor as a sequential vector.

2. Defineu, by solving the local, sparse linear problém, = Ac.

3. OutputP~IA = A — JA. — Ju.. Note that multiplication byl involves broadcast-
ing the small local vectora; andu, to large parallel vectordA. andJug.

6 Anastasios KarangelisgBastien Loisel, and Chris Maynard

Table 1: lteration counts for S2LM. Table 2: lteration counts for 2LM.

Domain size Domain size
Procs. 109 300% 100 300 # Procs. 109 30(% 100 300¢* 1000¢
64 216 409 952 2472 64 30 58 114 229 -
256 173 316 782 1753 256 37 35 72 135 -
1024 144 220 411 1090 1024 A7 44 42 76 -
4096 - - 301 665 4096 - - 53 50 82

2.1.4 Theouter solve

The implementations of the shell matrid@andQ and the assembly of the sparse
matrix K have been described. Building on these base implemensatiom fur-
ther form the shell matrice2 — (Q — K)A (implemented asQm nKmul) and
A= (1 —2K)(Q—K)A (implemented asm n2KQmi nKmul). The PETSc library
enables us to use a variety of different solvers. For theratdeation we experi-
mented with the Generalized Minimal Residk&PGVRES and the Flexible Gen-
eralised Minimal Residual methd(SPFGQVRES on shell matrice€r nKnul and
I M n2Kmul Qi nK, with the preconditionelP. For theKSPFGVRES solver we set
the relative convergence tolerance-17 and the absolute convergence tolerance
le—6.

Recall that GMRES is an iterative method that computes tipecpmate solu-
tion X € Xo+ sparro,Aro, .. .Akro} which minimizes the residual norfiio— Ax|| 2.
The efficient implementation of the least-squares probklies on the identity

AV = Viy1Hk, 17

whereVi is an orthonormal basis of the Krylov space #fdis an upper Hessenberg
matrix; cf. [7] for details. The Flexible GMRES algorithj] replaceg17) by,

AZqn = Vi 1Hi, (18)

and allows one to vary the preconditioner at each iteratidnich required testing
since our matrix-vector products are inexact.

2.1.5 Experimentsat large scale

Results for the iteration counts of the S2LM and 2LM methods@esented. In
both cases the Flexible GMRES algorithm for the outer sohret the Conjugate
Gradient algorithm for the inner solver were used. The prditmner for the outer
solve is the shell matri®, while the preconditioner for the inner solve is the in-
complete Cholesky ICC(10) of (16). The other parameterthf@isolvers have been
specified in sections.2.2 and 21.4.

2LM on HECToR 7

+ S2LM ‘ ‘ . . 2LM
---oHm™M2 L ---O(HM)*®
L - - O(HM)M?
10°% e
2 2 ’
2 - k]
g g .
g . 3104 S
% * $- 2 N
102 é) 1 : 2 3 (; : 1 : 2 3
10 10 10 10 10 10 10 10
Hih Hih
Fig. 1: Scaling of S2LM. Fig. 2: Scaling of 2LM.

The implementation used here is limited to a square domatiwandimensions
using a finite difference discretization. This choice wagienantirely for the sim-
plicity of implementation. The domains vary from £0® 10008 grid points (and
hence the largest problem has®Ifegrees of freedom). These domains are parti-
tioned into 64 to 4096 subdomains, which again is limited $gaare number. This
domain decomposition is mapped to the MPI decomposition BETFOR.

The symmetriq11) and nonsymmetric systeni$2) are solved, with tolerances
as in section 2.4; the outer iteration counts are reported in Tables 1 anchg. T
computational cost per outer iteration for a fixed domainsusiomain is constant.
The inner iterations are not reported as the ICC precomaiitits used for simplicity
rather than the optimal multigrid which would be used as @ingtice in a production
implementation. In addition to these raw iteration coumes also plot the scaling of
the methods against the ratityhin Figs. 1 and 2.

The S2LM performance is well explained by the condition neméstimate of
Theorem 3. Indeed, the S2LM matrix is symmetric and indefiaitd for such sys-
tems, one can show that the number of iterations is boundedduantity propor-
tional to the condition number. This bound is only sharp wtienspectrum of the
matrix is perfectly symmetric about the origin. We find thatre of our smaller
systems perform slightly better than this theoreticaheste.

The 2LM performance appears to be betw&# /h)1/3 andO(H /h)Y/2, The
2LM matrix is nonsymmetric. For nonsymmetric matrices, toadition number
does not necessarily predict the performance of the GMRE&i#im. However,
in our case, we find that the condition number explains wellgérformance of the
algorithm and that we further get “Krylov acceleration” -etherformance may be
almost as good & (H /h)1/3,

8 Anastasios KarangelisgBastien Loisel, and Chris Maynard

3 Conclusions

We have provided a large-scale implementation of the 2-dmgg multiplier meth-
ods with cross points and a coarse grid correction, which e iested on the
HECTOR supercomputer. Our experiments confirm the goodngcploperties of

the 2-Lagrange multiplier methods. In the future, we intemdnprove our imple-

mentation to further explore the scaling to the largestesyst

Acknowledgements We gratefully acknowledge the support of the Centre for Nuca¢rlgo-
rithms and Intelligent Software (EPSRC EP/G036136/1). Tiosk made use of the facilities
of HECTOR, the UK'’s national high-performance computing sarviwhich is provided by UoE
HPCx Ltd. at the University of Edinburgh, Cray Inc and NAG Ltdnd funded by the Office of
Science and Technology through EPSRC’s High End ComputioagrBmme.

References

1. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik,Khepley, M.G., Mclnnes,
L.C., Smith, B.F., Zhang, H.: PETSc Web page (2012). Httputamcs.anl.gov/petsc

2. Chan, T.F., Van Der Vorst, H.A.: Approximate and incomplet&drizations. Parallel Numeri-
cal Algorithms, ICASE/LaRC Interdisciplinary Series in Saerand Engeneering pp. 167-202
(1997)

3. Drury, S.W., Loisel, S.: Sharp condition number estimateghfeisymmetric 2-lagrange multi-
plier method. DD20 proceedings (2011)

4. Farhat, C., Roux, F.X.: A method of finite element tearing imtefrconnecting and its parallel
solution algorithm. Internat. J. Numer. Methods Eng2gpp. 1205-1227 (1991)

5. Loisel, S.: Condition number estimates for the nonoverlappptimized schwarz method and
the 2-lagrange multiplier method for general domains and crosggp To appear in SIAM
Journal on Numerical Analysis (2013)

6. Saad, Y.: A flexible inner-outer preconditioned gmres @lgm. SIAM Journal on Scientific
Computing14, 461-469 (1993)

7. Saad, Y., Schultz, M.: GMRES: A generalized minimal resicalgbrithm for solving non-
symmetric linear systems. SIAM Journal on scientific and statistical atng7(3), 856-869
(1986)

8. Toselli, A., Widlund, O.B.: Domain Decomposition Methods -gé&dithms and Theory, vol.
volume 34 of Springer Series in Computational Mathematics. ngpri Berlin Heidelberg
(2005)

