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1 Introduction

Particle methods are an attractive approach for solving complex three-dimensional
flow problems since they are naturally adaptive [4]. In this work, we utilize a parti-
cle description based on vorticity to discretize the Navier-Stokes equations in space,
which results in a first-order initial value ODE for the particles’ positions and vor-
ticities. When highly accurate solutions to the initial value problem are required, it
is usually more efficient to use higher-order temporal integration schemes. Spectral
Deferred Correction (SDC) methods [6] are an elegant way to achieve high-order
time integration by using simple low-order schemes in an iterative fashion. While a
single time-step of an SDC method is usually more expensive in terms of computa-
tion time than a step of a classical Runge-Kutta scheme, SDC can be competitive in
terms of time-to-solution required for a fixed accuracy [3].

The temporal integration in vortex methods requires the evaluation of an N-body
problem for each function evaluation. This evaluation can be parallelized efficiently
by a spatial distribution of the particles over multiple cores. However, the strong
scalability of this approach is limited when the number of degrees-of-freedom per
core becomes too small (similar to domain decomposition techniques for mesh-
based methods). Time-parallel methods are one possible approach to speed up sim-
ulations beyond this saturation point, with early approaches dating back to [18]. A
very general scheme is Parareal [15], which allows arbitrary integration schemes to
be used in a black-box fashion. A detailed mathematical analysis of Parareal is con-
ducted in [8] and comprehensive lists of references can be found e. g. in [17, 20].
The drawback of Parareal is that the parallel efficiency is formally bounded by 1/K
where K is the number of iterations required for convergence. The Parallel Full Ap-
proximation Scheme in Space and Time (PFASST) method for parallelizing SDC
methods in time is introduced in [7, 17]. By combining the iterations of SDC with
the iterations of Parareal, it significantly relaxes the efficiency bound of Parareal and
further enhances the competitiveness of integration schemes based on SDC.
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The present paper investigates the accuracy of integrating a particle-based dis-
cretization of the 3D Navier-Stokes equations in time using SDC and PFASST. We
are not aware of any other studies that investigate SDC integration methods in con-
junction with particle-based spatial solvers aside from a small, one-dimensional N-
body example in [2] for Revisionist Integral Deferred Corrections (RIDC).

Since this work focuses on the accuracy of the temporal discretization, the N-
body problem is solved directly with O(N2)-complexity, limiting the presented
studies to rather small numbers of particles. The unfavorable quadratic complex-
ity can be overcome by computing approximate interactions using e. g. Barnes-
Hut tree codes [1] or the Fast Multipole Method [11]. Results on the strong scal-
ing of PFASST on extreme scales, simulating merely 4 million particles on up to
262,144 cores, are reported in [26], where the massively parallel Barnes-Hut tree
code PEPC [9, 10, 23, 24, 27] is applied. There, however, only a very brief dis-
cussion of accuracy is given, aiming solely at identifying parameters that generate
time-parallel and time-serial solutions of comparable quality that allow for a mean-
ingful comparison in terms of runtimes. Here, accuracy of the method is addressed
in more detail, including a comparison with a standard Runge-Kutta scheme.

We briefly describe SDC and PFASST in Section 2 and present accuracy studies
in Section 3. In Section 4 we summarize our results and comment on how further
efficiency can be achieved for particle-based methods as a prelude to the large-scale
simulations performed in [26].

2 Parallel in Time Integration using Spectral Deferred
Corrections

Discretizing the vorticity-velocity formulation of the Navier-Stokes equations with
N particles results in an initial value problem of the form (see e. g. [4])

d
dt

y(t) = f (y(t)), y(0) = y0 ∈ R6N , t ∈ [0,T ] (1)

where the right-hand side f denotes the sum of all mutual particle interactions
(commonly via regularized smoothing kernels) and y ∈ R6N is a vector contain-
ing 3D positions and vorticities of N particles. Without further approximation, di-
rectly evaluating f is of O(N2)-complexity. This can be significantly reduced using
multipole approximations with either Barnes-Hut tree-codes [22] or the Fast Multi-
pole Method [5] at the cost of increased spatial approximation errors. In this work,
however, we focus on errors from temporal discretization, and hence f is evalu-
ated exactly with full accuracy and quadratic complexity. To solve the initial value
problem (1), classical explicit time-stepping algorithms such as fourth-order Runge-
Kutta schemes are commonly used, see e. g. [19]. Here, we use SDC methods [6],
which can easily produce high-order time integration schemes from simple low-
order methods and which can be parallelized in time using PFASST [7, 17].
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Let 0 = t0 < t1 < t2 < .. . < tM = T denote a discretization of the time-interval
[0,T ], and let tm ≤ τm

1 < τm
2 < .. .τm

J ≤ tm+1 denote a set of quadrature points in
the interval [tm, tm+1], see [14] for details on the choice of these nodes. For brevity,
we fix m and write τ j instead of τm

j for all j = 0, . . . ,J. Moreover, let y j denote an
approximation to y(t j), j = 0, . . . ,J. Starting from the equivalent Picard formulation
of Eq. (1), the key ingredient of SDC is the spectral approximation

S j+1
j f =

J

∑
l=0

α j,l f (yl)≈
∫

τ j+1

τ j

f (y(τ)) dτ (2)

with quadrature weights α j,l ∈ R. Then, the k+ 1 explicit update for y j+1 at node
j+1 using low-order explicit Euler is evaluated as

yk+1
j+1 = yk+1

j +∆τ j

[
f (yk+1

j )− f (yk
j)
]
+S j+1

j f k, (3)

where ∆τ j = τ j+1− τ j, k is the iteration index and y0
j is some provisional solu-

tion computed at the nodes τ j. For K iterations with a first-order propagator, SDC
formally results in a Kth-order time integrator, provided the quadrature approxi-
mation is accurate enough. On the other hand, using M Gauss-Lobatto quadrature
nodes yields a method of order 2M−2, provided the number of iterations K is large
enough. We refer to [6, 12] for more details and properties of this approach.

To introduce parallel time-stepping we briefly review the Parareal approach [15].
Here, temporal parallelization of (1) is imposed by iterating over two integration
schemes, a fast and inaccurate one (the “coarse” propagator) denoted typically as
G and a slow but accurate one (the “fine” propagator) labeled F . While a classical
time-marching scheme computes a sequence of solutions

ym+1 = F (ym), tm ∈ [0,T ], (4)

Parareal replaces (4) by the iteration

yk+1
m+1 = G (yk+1

m )+F (yk
m)−G (yk

m), m = 0, . . . ,M−1 (5)

where k ≥ 0 is again the iteration index. The key here is that if the solution from
iteration k is known, the expensive evaluation of the terms F (yk

m) can be done
in parallel for multiple m. Then, a correction is propagated from t0 to tM through
the cheap yet serial computation of the terms G (yk+1

m ). The Parareal iteration (5)
converges to a solution of the same accuracy as obtained by running F in serial
(i. e. by computing (4)). For Nit iterations of Parareal and Np processors, the speedup
achievable is bound by Np/Nit, see [17].

To improve parallel efficiency, the PFASST algorithm intertwines SDC inte-
grators of different accuracy for G and F with the iterations of Parareal. In ad-
dition to multiple levels in time, PFASST can benefit from spatial coarsening,
as used in e. g. multi-grid techniques. Furthermore, PFASST employs Full Ap-
proximation Scheme (FAS) corrections to increase the accuracy of SDC iterations



4 R. Speck, D. Ruprecht et al.

on coarse levels. Many details of SDC, Parareal and PFASST have been omit-
ted here for brevity, and the reader is referred to the more detailed discussions in
e. g. [6, 7, 15, 17, 20, 26].

3 Numerical Results

To test SDC and PFASST in the framework of particle simulations we use a standard
spherical vortex sheet setup as discussed e. g. in [21, 25] with N = 10,000 particles
(i. e. 60,000 degrees-of-freedom), a sixth-order algebraic kernel for the regulariza-
tion, and final time T = 32. For convenience, the direct evaluation of f has been
parallelized in space using 64 processors of the Intel Cluster JUROPA at Jülich Su-
percomputing Centre [13]. Reported errors are computed using a reference solution
generated by an 8th-ordered SDC method with 2,048 time-steps.

Figure 1(a) shows the relative maximum error against the number of evaluations
of f for the standard RK4 method (denoted RK(4)) and SDC with different num-
bers of iterations and Gauss-Lobatto quadrature nodes (denoted SDC(X ,Y ) for X
iterations and Y Gauss-Lobatto nodes). The left-most markers correspond to 8 time-
steps, the rightmost to 2,048. Here, the order of convergence of SDC equals the num-
ber of performed iterations, since the number of quadrature nodes is high enough,
see [6]. Increasing the order of SDC (i. e. increasing the number of iterations) re-
duces the error substantially for a given number of function evaluations. Hence, if
solutions of moderate or high accuracy are sought, e. g. below 10−7, higher-order
SDC methods are more efficient in terms of f evaluations than RK4 or lower-order
SDC methods.

Although fourth-order SDC (realized here by SDC(4,3) in Figure 1(a)) is more
expensive than the classical RK4, one advantage of SDC methods is that the or-
der of convergence can be easily controlled by the interplay of quadrature nodes
and iterations. Implementing Runge-Kutta schemes of higher-order, on the other
hand, involves tedious and error-prone code re-implementations. Moreover, SDC
can easily treat stiff and non-stiff parts of the right-hand side separately and/or with
differing time-steps accuracy [16]. More importantly for the present study is that
SDC methods can be parallelized in time using PFASST.

In Figure 1(b), we show the relative maximum error of two-level PFASST
runs on four time-processes, i. e. with four times more processors than the space-
parallel/time-serial SDC runs. Here, the x-axis depicts the maximum number of f
evaluations performed by one process (maximum is typically attained on the last
time-rank), counting evaluations of f in F as well as in G , see also the discussion
on Figure 2 below. We do not employ spatial coarsening, i. e. the propagators F
and G differ only in the number of temporal quadrature nodes. We also compare
the PFASST runs to a serial SDC run with 8 iterations on 7 Gauss-Lobatto nodes.
PFASST, while being more expensive in terms of f evaluations, also yields a higher
accuracy for a given number of iterations and quadrature nodes in our case. This is
due to the fact that each iteration contains sweeps at both fine and coarse levels, so
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Fig. 1 Error versus number of evaluations of the right-hand side f for SDC(X ,Y ) and the max-
imum number of f evaluations performed by one process (typically on the last time-rank) for
PFASST(X ,Y ) on 4 time-processes. Direct particle simulation of a spherical vortex sheet with
10,000 particles, sixth-order algebraic kernel, and up to 2,048 time-steps.

that effective number of SDC sweeps is higher than the number of iterations. Note
again that higher-order schemes show much better efficiency in terms of accuracy
versus f evaluations.

Besides providing higher accuracy, PFASST also introduces an additional layer
of parallelism. Provided that the spatial parallelization is already saturated, the ap-
plication of PFASST can push the strong-scaling limit further by distributing the
temporal integration across multiple time-processes, as shown in [26]. To shed
more light on this concept, Figure 2 shows the number of f evaluations required by
PFASST(8,7) on one to eight time-processors with 16 time-steps. As a reference,
we choose SDC with 12 iterations on 7 quadrature nodes to obtain a comparable ac-
curacy to PFASST(8,7) when tested against a very fine resolved reference solution:
Both schemes provide an accuracy of approx. 10−13 with 16 time-steps. The num-
ber of f evaluations in G are highlighted in blue and hatched, the ones in F in red.
Note that there is no coarse propagator in the single-level SDC scheme. The second
bar, denoted P(8,7,1), corresponds to PFASST with 8 iterations and 7 quadrature
nodes on one time-processor. When run on one time-processors, PFASST reduces
to a multi-level SDC scheme. Comparing SDC(12,7) and PFASST(8,7,1) we note
that by switching from a single-level SDC scheme of a given order to a multi-level
SDC scheme with comparable accuracy, the number of iterations are reduced (from
12 to 8 in our case). On the other hand, significant additional costs are introduced
due to the additional f evaluations required by the coarse step and the transfer oper-
ations between fine and coarse quadrature nodes. However, the extra computational
work of the multi-level SDC scheme can be distributed across multiple processors
as demonstrated in the three remaining bars, which correspond to PFASST(8,7)
on two, four and eight processors. Hence, if the workload of PFASST(8,7) is dis-
tributed across sufficiently many processors, then the total runtime becomes smaller
than the time-to-solution of the serial SDC(12,7) method. This is highlighted by
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Fig. 2 Distribution of f evaluations on the coarse and fine level for SDC(12,7) (abbreviated by
S(12,7)) and PFASST(8,7,Z) with Z = 1,2,4,8 time-processes (abbrev. by P(8,7,Z)). One block
of coarse and fine evaluations corresponds to one time-step on one time-process (SDC is serial in
time and evaluates only on the fine level). Depicted runtimes are normalized with respect to the
SDC runtime (418 sec. for our test setup with with 10,000 particles, sixth-order algebraic kernel).
All runs yield comparable accuracy for 16 time-steps.

the green line, which shows the runtime normalized by the runtime of SDC(12,7).
While PFASST(8,7,2) is still slightly slower than SDC(12,7), PFASST(8,7,4)
and PFASST(8,7,8) show significant speedup. The cost of enlarging the problem,
i. e. switching from SDC to a multi-level scheme, is compensated by the fact that
this multi-level approach is amenable to parallelization while SDC itself is not.

4 Conclusion and Outlook

In this work, we have investigated the accuracy and convergence order of Spec-
tral Deferred Correction (SDC) methods and their parallelization using the PFASST
method. SDC provides a reliable, flexible, and generic mechanism to generate high-
order and high-accuracy time integrators. We have shown that SDC and its time-
parallel variant PFASST provide the theoretically expected convergence orders and
accuracies on an example particle problem. In contrast to classical Runge-Kutta
schemes, the convergence order and/or accuracy of SDC methods can easily be con-
trolled by changing the number of iterations and/or quadrature points used, and the
use of higher-order SDC methods allows much larger time-steps and hence fewer
evaluations of the right-hand side. This is consistent with the increase of accuracy
and also stability regions observed in [6].

Another key advantage of SDC methods is that that they can be parallelized in
time with PFASST. Here, the careful union of fine and coarse SDC iterations leads
to a high-order parallel-in-time integration scheme which relaxes Parareal’s bound
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on parallel efficiency and can provide significant speedup beyond space-only paral-
lelization. In our test case, PFASST is more accurate for a given number of quadra-
ture nodes and iterations, although for enough iterations both SDC and PFASST
eventually provide the same solution. Moreover, we have demonstrated how the
principle of “doing more to be faster” paves the way for temporal parallelism: the
introduction of (possibly multi-level) coarsening in space and time increases the
number of f evaluations significantly but also allows work to be distributed across
many time-processors.

Here PFASST is used with temporal coarsening only, while considerably more
parallel efficiency can be obtained by introducing both spatial and temporal coars-
ening. While grid-based spatial coarsening by multi-grid techniques is well under-
stood, spatial coarsening of particles systems is less straightforward. One possibility
is to control the quality of the approximation of f using multipole methods instead of
direct summation [26]. Thus, the use of fast summation algorithms not only allows
extreme-scale simulations as demonstrated in [27], but also introduces a promising
way of particle-based spatial “coarsening”.
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