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As many domain decomposition methods the two level Add&igbwarz method
may suffer from a lack of robustness with respect to coefiicvariation in the un-
derlying set of PDEs. This is the case in particular if thetipan into subdomains
is not aligned with all jumps in the coefficients. Thanks te theoretical analysis of
two level Schwarz methods (see [11] and references theteémlack of robustness
can be traced back to the so called stable splitting profehtyady in [4]). Follow-
ing the same ideas as in the pioneering work [1] we proposelte & generalized
eigenvalue problem in each subdomain which identifies whedtors are respon-
sible for slow convergence. The spectral problem is spediifichosen to separate
components that violate the stable splitting property.seheectors are then used
to span the coarse space which is taken care of by a direa adlile all remain-
ing components can be resolved on the subdomains. The igsuyfireconditioned
system with a condition number estimate that does not departtie number of
subdomains or any jumps in the coefficients. We refer to thagiod as GenEO for
Generalized Eigenproblems in the Overlaps. It is closdbted to the work of [2]
where the same strategy leads to a different eigenproblehdiffierent condition
number estimate (which also does not depend on the jumpsindéfficients or
on the number of subdomains). A full theoretical analysishef two level Addi-
tive Schwarz method with the GenEO coarse space (first biigfigduced in [8])
is given in [7]. Here our purpose is to show the steps leadinghfthe abstract
Schwarz theory to the choice of our generalized eigenvalolel@m (5). In the first
section we introduce the rather wide range of problems tehwtiie method applies
and give the classical two-level Schwarz condition numliséimete in the abstract
framework (again, see [11] and references therein). In¢kcersd section we work
to make this condition local (on each subdomain), identiy GenEO generalized
eigenproblem and state our main result (Theorem 2). Fimalliye third section we
illustrate the result numerically.
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1 Problem Setting

Given a finite dimensional Hilbert spa¥g, a continuous and coercive bilinear form
a:Vh xVh — R and a right hand sidé €V} we consider the following problem.
Find v € Vj, such thata(v,w) = (f,w) for all w € V5. Then given a basis for,, we
can derive a linear systefwv = f.

Assumption: The following assumption is needed on the bilinear foans:given
through positive semi definite element matri¢as} ;<  where.7;, is a mesh on the
computational domai® underlyingvy,. Our method can also be defined for abstract
elements and degrees of freedom as in [7] but here we focuB&s Bnd prefer this
more intuitive point of view.

The reason why we require this assumption is so that we mageddtir any
subseD which is resolved by the mesh, the following local bilineamf:

aD(va) = EDaT(V\ﬂW\T)' (1)

The Additive Schwarz method is based on an overlappingt'pcimt{Qj}’j\‘:l of Q
where eaclf; is resolved by the mesh. On each of these subdomains, wesdégot
space of functions supported &y by: Vio(Qj) := {V|g : V€ Vh, SUpHV) C Qj}.

An important role is played by the extension oper&tﬁr: Vho(Qj) — Vi which
returns the extension by zero of a functior V,o(Qj) to Q. The adjoint oijT
is the restriction operatdR; : V{, — Vho(Q;)" defined by(R;g,v) = (g, RJ-TV), for
VEVho(Q)), g€ V. LetRj be the matrix representation Bf. This is a boolean
matrix. Then the one level Additive Schwarz preconditiosetefined simply based
on these interpolation operatorsMsg, := y'; R/ A;'Rj whereA| := RjAR]
are the local problem matrices.

In other words, the one level Schwarz preconditioner agprates the inverse
of the global matrixA~1 by a sum of local inversea . The method is known to
converge [11] as long as the subdomains and finite elemenes@ae chosen so
thatVy, = Z’j\‘:l {RjTVh,O(Q,-) . In some sense this ensures that the local subdomains
are overlapping enoughThe drawback of the one level Schwarz method is that
its convergence rate depends on the number of subdomairthasmdcales poorly
for large problems. The introduction of a coarse space ig aptv classical, way of
weakening this dependence. Having chosen the coarse\§pacel an interpolation
operatonRﬂ : V4 — W, the two-level Additive Schwarz preconditioner is the most
simple two level method: it reads

N
Mag2 = R4AGRH + 5 R{ATIRj, Ay i=RpAR}; (Coarse problem matrix)
j=1

(2)

whereRy is the matrix representations Bf;.
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The following theorem is simply a reformulation of the rdsuh Chapter 2 of the
book by Toselli and Widlund [11] where the abstract Schwhenty is presented.
We refer to there for the proof.

Theorem 1 (Condition number in the abstract Schwarz theory) Let kg be the
maximal degree of multiplicity of a point if2 with respect to the partition into
subdomains: k= maxcqo (#{Qj 1< j<N,xe ﬁj}).

Assume that for a fixed constanttBere exists a stable splitting, z,...,2v) €
Wy x Vh70(.Ql) X ... X Vh,O(-QN) of any ve V.

N N
v=Riz+ 3 Riz; aRiz,Rizi)+ Y aRfzj,Rz) < C2a(v,v). (3)
=1 =1
Then the condition number of A preconditioned by the twd l&dditive Schwarz
operator satisfieg (M ;éZA) < (ko+1)C3.

This theorem is the cornerstone of our method and we makehjective more
precise thanks to these two remarks:

e The constankg in the inequality does not depend on the number of subdomains

but only on the geometry of the partition. For instance in tlimensions if a
regular partition into rectangular subdomains is used Kyea4 no matter what
the total number of subdomains is. This means that the presefkp in the
estimate does not violate scalability.

e To make the theorem more precié%i2 is a lower bound for the eigenvalues of
the preconditioned operator akgH- 1 is an upper bound. The upper bound holds
and is sharp regardless of the choice of the (non empty) esquace. For this
reason we do not work to improve the upper bound and insteadilvevork
only on the lower bound through the stable splitting assionpt

Now the question of making the method robust with respechéonumber of
subdomains and the coefficients in the PDESs reduces to tlogvfoy problem:

Find a coarse spa&g for which there exists a constadg independent
of the number of subdomains and the coefficients in the uyidgrket
of PDEs such that any € 4, admits a stable splitting (3) onto th
coarse space and the local subspaces.

n

2 From the abstract Schwarz theory to the GenEO coarse space

The practical inconvenience of the stable splitting propés that it is not local.
Reducing it toN local problems relies on the following observation: there tavo
simple ways to get a local versionwgfeither with the restriction operat&v which
returns a function itvi,o(Q;j) that is supported i®2; or by restricting the domain
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of v to Q; which we denote/‘gj. There is no immediate inequality between the
global terma(v, v) and any of the local terme, (R;v, Rjv). However the alternative
inequalitya(v,v) > ag; (V|o;,V|o;) holds (and motivates the following lemma), since
according to (1),

a(V,V) =ag (V7V) = a.Qj (V|Qj aV|Qj ) + a.Q\Qj (V\.Q\Qj 7V|Q\Qj) :

>0

Lemma 1. Given ve V,, if there exists a splitting ¥ z4 + 2z + ... + zy such that
each local component ( 1,...,N) satisfies &R/ z,R/z) < Ciag;(Vio;,Vjo,),
then the splitting is stable in the sense of (3) f§r-€2+ C1ko(2ko + 1).

Proof. Using the definition oky we can bound the sum of the local contributions:

N N
Zla(R}ij ’ R]rzj) <C zla.Qj (V\.Qj 7V\.Qj) < ClkOa(V7 V)'
]= ]=

The bound for the energy of the coarse contribution followsnfRz4 = v —
5.1 R/ zj which impliesa(Rz+,R}z+) < 2a(v,v) +2a(z'j\‘:1 R/ z,50, R?z,-)
and, by the definition oty and the previous inequality,

J:

N N N
2
a (Zl R/ z, j; Rszj> <ko JZla(Rszj ,R[ z)) < Cikga(v,v). 4)

Putting all of these estimates together ends the proof dethena. O

Lemma 1 also explains why we think of the coarse space as #e sgfbad
components. Indeed, it states that it is enough to checkathaistimate holds on
each of the local componentg of the splitting. Then this implies an estimate for
the coarse componenj and in turn the stable splitting assumption is satisfied.

An important tool in building the GenEO coarse space is alfaofi partition
of unity operators. The particularity of these partitioruoity operators is that they
are defined at the degree of freedom level. The main consequgithat when the
partition of unity is applied to a function we do not need tmterpolate into the
finite element space as is classically the case in partitiamity spaces where an
application of the partition of unity is a multiplication laycontinuous function.

Definition 1 (Partition of unity). For each subdomain ledof(Q;) be the set of
degrees of freedom for which the associated basis fungtias supported inQ;:
dof(Q;) = {k; sup¢k) C Q;}. Then for each degree of freedom=ki,...,n let

{Hj K} {j:kedof(;)} De afamily Ofweightéﬂj,k >1 and 3 (jkedof(Q;)} ﬁ = 1)-
Finally the local partition of unity operator for ¥ \;, written as v= y3_; @k is
defined by

_ 1
Zi(Vi) = — Vk K0 -
: kedozf(f)j) Hik
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This definition gives rise to a few remarks:

e A possible choice for the weights in the definition of the jiant of unity is
to use the multiplicity of each degree of freedom (this is twva use in the
numerical section): for any degree of freed&ml < k < n, let y denote the
number of subdomains for whidhis an internal degree of freedom, i.e.

M :=#{j: 1< j<Nandke dof(Qj)}.

Then lety; x = p for every subdomain for whichk € dof(Q;).

e Other more coefficient adapted choices similar to thoselind8ld be made.

e The family of operators(=;}j—1.. n indeed forms a partition of unity since
z’j\‘zl RJTEJ- (Vig;) = vfor anyv € Vi,. This provides an obvious splitting gfonto
the local subspaces.

e The partition of unity operatcE; takes the restriction of a function to subdomain
Qj and returns a function ¥ o(Qj) (which is supported ;).

e If a degree of freedonk belongs to only one subdomaijnthen y;j = 1 and

(EJ- (V‘QJ. )) - (V‘Qj ) o This is the reason why the overlap plays a special role in

the generalized eigenvalue problem which separgieslandbad components.
More detail is given in the proof of the final theorem.

Next we introduce the GenEO coarse space.
Definition 2 (GenEO coarse space).
1. For each subdomaif; (1 < j <N), let the overlap be given by

Q)= J{rcQj:3j'#] suchthat TC Qj}.

2. Foreach j=1,... N, solve the following generalized eigenvalue problem: find
the eigenpairgpk, Af) € {viq;;v € Vn} x R* of
an(pi]f’V‘Qj) :)‘jka.QJo(El(pT)aEJ (V\Qj)) for all VEWh. (5)

3. Given a threshold’?j for each j=1,...,N, let the GenEO coarse space be
defined as _
Vi :=spaR/ Zj(p}) 1 Af < 55 j=1,...,N}.

Assumption: An additional technical assumption is
needed for the proof of Theorem 2. In [7] this is giver]
rigorously in the abstract framework but here since w|
do not go into the details of the proof we will relie on
the figure on the right. We assume that given data fc
the degrees of freedom in the overlap that do not li
on the boundary (i.e. the dots) we can build a discrei
harmonic w.r.tag, (-,-) extension to the whole a®;.

In the next theorem we give our main result which is an esgnfiat the condi-
tion number. It relies solely on the stable splitting prapeWe provide a suitable
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decomposition that allows to complete the proof along wlith tain steps of the
proof.

Theorem 2 (Stable Splitting and Final Estimate).For any j=1,...,N, suppose
that the ﬁfe Vi have been normalized w.r.tQJa(Ej(-),E,-(~)) and let[7; be the
projection operatorfTj(Vig;) = 3 . sk« ;) 325 (5 (P), Zj(vq,))P¥. Then, for any

V € W, the splitting 7 := 3}, = (I'Ij(vmj)) and z := = (V|Qj — I'Ij(vmj)) sat-
isfies Lemma 1 for C= max<j<n ( 1+ %) so, by Theorem 1, the condition num-
ber of the preconditioned operator is bounded by

1
-1 < =
K(MasoA) < (1+ko) [2+ ko(2ko+1) 192)& (1+ 7 )} ,
Proof. The only thing that we need to checkafR,| zj, R/ zj) < <1+ %)a(v,v).
Here we only give the key ideas of the proof, the whole proaf more general set-
ting can be found in [7]. The most important ingredient in pineof is that, because

they were obtained through a generalized eigenvalue prohitee p‘J? form a basis
of {V|Qj ;V € Vi } with the additional orthogonality type properties:

ag: (5j(Pf),Zj(P}) =0 and ag (pf.pj)=0 forallkl. — (6)
Using these properties we obtain

' K ok : K ok
Vig, —I‘IJ(V‘Qj) = ajpj, foranyvio, written asv o, = Zai P;;

{kﬂ%fj}
where the coefficienta}‘ € R. Then we make appear the overlap term:

a(R}ij ) R]TZI) = an (Zj,Zj) = a.QJ? (Zj,Zj) + an\Qjo (Zj,Zj).
In the interiorQ; \ Qj we have thaE; is identity sozj = v|o, — I'Ii(v‘gj) and be-
Causaﬂj\Qf('a ) < a-Qj ('a ) a.Qj\.Qf (Zjvzj) < a-Qj (V\.Qj - nJ(V|Qj )7V|Qj — (V\.Qj ))

Then by an orthogonality argumea)éj\gjp (zj,2)) < ag;(Via;Viq,)-
For the other term, we write

a0 (2),2j) = ag; Z ak=Zj(p}), Z ak=j(p})
{k:A>} {k:)\j>.)£/j}
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1 K Kk 1
<— Y al%q (P, ) = a0, (Vio, . Vio, )-
i {a%k} J iINFpE) % j i i

3 Numerical results

We run a simulation for the Darcy equatierl] - (av) = 1 in Q = [0,1]? with
homogeneous Dirichlet boundary conditions on the whol@ Qf. The mesh is
200x 200 square elements further subdivided into triangles hadinite element
discretization uses standalfd basis functions. All the finite element data is gen-
erated using Freefem++ [5]. The coefficient distributiomather random since it
is given by a QR code. This is shown on the left hand side of leiguwhere in
the yellow (or light) partsx = 1 and in the pink (or dark) parts = 1000. The de-
composition into subdomains is the 100 subdomain partélaainedvia Metis [6]
where we add one layer of overlap to each subdomains. Thistieg in the mid-
dle of Figure 1. The results are shown on the right hand sidégfre 1 where we
have plotted the condition number versus the coarse spaedosidifferent values
of the threshold; which is used to select modes for the coarse space. We observe
that the coarse space grows roughly linearly with the tholeshut the condition
number stabilizes quickly. What this illustrates is thatr¢his a good compromise
to be found between the size of the coarse space and the reffiadé the method.
An automatic optimal choice fa¥] is a subject for future research. More thorough
numerical experiments can be found in [7, 8] including thdeeensional examples
and results for elasticity.

Condition number

0 200 400 600 800 1000 1200
Size of the coarse space

Fig. 1 Left: coefficient distribution (pink or dark is high condudty) — Middle: Metis par-
tition of the 200x 200 mesh into 100 subdomains — Right: We plot the condition number
with respect to the coarse space size when the threshold succedsivety the values €
[0.01;005;01;0.2;0.3;0.4;0.5;0.6;0.7;0.8;0.9]. As a matter of comparison: without any coarse
space the condition number is 9661. With just the weighted cnn§qa1‘9j) per floating subdo-
main the condition number is 7324: this 62 dimensional coarse spadeat we get for GenEO
with a barely positive threshold= 0" (not shown on the graph simply because of scaling issues).
We observe that the most troublesome eigenmodes are identifiediifersgsmall value of the
threshold and a reasonable size of the coarse space, then thiocondimber stagnates.
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Conclusion

We have introduced the GenEO coarse space which is a waydmatically make
the two level Schwarz method robust. The construction aftbarse space is based
on solving generalized eigenvalue problems which isgjai@d andbad modes in
each subdomain. We have presented the steps which leaddbdlee of this gen-
eralized eigenvalue problem starting with the abstractMach theory and the key
ideas of the proof for the condition number estimate. Thele/pooof and a more
general setting can be found in [7]. Although the eigenvalwdlems are local, can
be solved in parallel and only the smallest eigenvalues egéed, this setup phase
could be costly and the study of the overall cost of the athoriis still work in
progress. The related methods in [2, 4] have been extendadrtaltilevel setting
by [3, 12]. Moreover, this strategy was further applied bynef the authors in the
BDD and FETI frameworks [9, 10].
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