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1 Vibro–Acoustic Interface Problem

As a vibro–acoustic interface model problem we consider a three–dimensional elas-

tic body, e.g., a submarine, which is completely immersed in a full space acoustic

region, e.g., water [5]. Other applications that we have in mind are the sound radi-

ation of passenger car bodies, where the acoustic region is bounded, or of partially

immersed bodies such as ships, where the acoustic region is a half space [2].

In this paper, we consider both a direct simulation of the interface problem by us-

ing a symmetric coupled finite and boundary element approach, and an eigenvalue

analysis to determine the eigenmodes of the coupled system. The time–harmonic

vibrating structure in Ωs is modeled by the Navier equations in the frequency do-

main, while the acoustic fluid in the unbounded exterior domain Ω f is described by

the Helmholtz equation,

−ρsω
2u− µ∆u− (λ + µ)graddivu = f in Ωs, κ2 p+∆ p = 0 in Ω f . (1)

In (1), λ and µ are the Lamé parameters, ρs and ρ f are the densities of the structure

and of the acoustic fluid, respectively, ω is the frequency, and κ = ω/c ∈ R is

the wave number. Note that Ωs ⊂ R3 is in general a bounded, multiple connected

domain with an interior boundary ΓI = Γ D ∪Γ N , ΓD ∩ΓN = /0, see Fig. 1, where

boundary conditions of Dirichlet and Neumann type are given,

u = gD on ΓD, T u := λ (divu)n+ 2µ
∂

∂n
u+ µ n× curlu = gN on ΓN . (2)

Fig. 1 Computational domain

and boundary conditions

In addition to the partial differential equations (1) and the boundary conditions (2)

we consider transmission conditions on Γ = Ω s ∩Ω f ,
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T u+ pn = 0, ρ f ω2u ·n = n ·∇p on Γ . (3)

Finally, p has to satisfy a radiation condition at infinity,

lim
r→∞

∫

|x|=r

∣∣∣∣
∂

∂nx

p(x)− iκ p(x)

∣∣∣∣
2

dsx = 0. (4)

For complex wave numbers κ ∈ C with ℑ(κ) < 0, instead of (4) one has to use

a radiation condition in terms of spherical Hankel functions in order to describe

outgoing waves, see [12].

The aim of this paper is to derive and to discuss a symmetric coupled finite and

boundary element formulation which is stable for almost all frequencies ω ∈R, and

to characterize all eigenfrequencies ω ∈ C which imply non–trivial solutions of the

homogeneous transmission problem (1)–(4), i.e. for f = 0, gD = 0, gN = 0. In fact,

in this case only one of the three following situations may appear [9]:

i. A real eigenfrequency ω ∈ R implies p = 0, and any non–trivial solution u is a

so–called Jones mode satisfying T u = 0 and u ·n = 0 on Γ [6].

ii. A complex value ω ∈C with ℑ(ω)> 0 implies u = 0 and p = 0.

iii. If ω ∈ C\R is an eigenfrequency, then ℑ(ω)< 0.

In the low frequency regime one may consider an approximation of the Helmholtz

equation in (1) by the Laplace equation, for related coupled finite and boundary

element formulations, see [10].

2 Coupled finite and boundary element methods

The symmetric coupling [4] of finite and boundary elements for the transmission

boundary value problem (1)–(4) relies on the standard variational formulation of the

Navier equations in Ωs, and the use of the exterior Calderon projection of boundary

integral equations [13] to describe the solution of the Helmholtz equation in Ω f .

The resulting variational formulation is to find u ∈ [H1(Ωs)]
3, u = gD on ΓD, such

that
∫

Ωs

[
2µ e(u) : e(v)+λ divu divv

]
dx−ρsω

2
∫

Ωs

u ·vdx (5)

−ρ f ω
2〈Vκ [u ·n],v ·n〉Γ + 〈(1

2
I +Kκ)p,v ·n〉Γ =

∫

Ωs

f ·v dx+

∫

ΓN

gN ·v dsx

is satisfied for all v ∈ [H1(Ωs)]
3, v = 0 on ΓD, where p ∈ H1/2(Γ ) is a solution of

the hypersingular boundary integral equation

1

ρ f ω2
Dκ p+(

1

2
I+K′

κ)[u ·n] = 0 on Γ . (6)
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The boundary integral operators are defined as, for x ∈ Γ ,

(Vκ q)(x) =

∫

Γ
U∗

κ (x,y)q(y)dsy, (Kκ p)(x) =

∫

Γ

∂

∂ny

U∗
κ (x,y)p(y)dsy,

(K′
κ q)(x) =

∫

Γ

∂

∂nx
U∗

κ (x,y)q(y)dsy, (Dκ p)(x) = − ∂

∂nx

∫

Γ

∂

∂ny
U∗

κ (x,y)p(y)dsy,

where the Helmholtz fundamental solution is

U∗
κ (x,y) =

1

4π

eiκ |x−y|

|x− y| for x,y ∈ R
3.

For the mapping properties of all boundary integral operators, see, for example,

[13]. In particular, the hypersingular integral operator Dκ : H1/2(Γ ) → H−1/2(Γ )
is coercive and injective, if κ2 is not an eigenvalue of the related interior Neumann

eigenvalue problem of the Laplace operator in R3\Ω f . However, since we are using

a direct approach we find ( 1
2
I +K′

κ)[u ·n] ∈ ImDκ even in the case when κ2 is an

eigenvalue of the interior Neumann eigenvalue problem with a related eigensolution

pκ2|Γ ∈ H1/2(Γ ) [14], i.e.

−∆ pκ2 = κ2 pκ2 in R
3\Ω f ,

∂

∂n
pκ2 = 0 on Γ .

The general solution of the hypersingular boundary integral equation (6) is then

given by

p =−ρ f ω2D−1
κ (

1

2
I+K′

κ)[u ·n]+α pκ2 , (7)

where D−1
κ has to be understood as a pseudoinverse. Note that α ∈ R is an arbitrary

constant. However, when inserting the solution p as given in (7) into the variational

formulation (5), we have to evaluate

(
1

2
I+Kκ)p = −ρ f ω2(

1

2
I +Kκ)D

−1
κ (

1

2
I +K′

κ)[u ·n]+α(
1

2
I +Kκ)pκ2

= −ρ f ω2(
1

2
I +Kκ)D

−1
κ (

1

2
I +K′

κ)[u ·n]

due to kerDκ = ker( 1
2
I+Kκ). In fact, the Poincaré–Steklov operator

Tκ :=Vκ +(
1

2
I +Kκ)D

−1
κ (

1

2
I +K′

κ) : H−1/2(Γ )→ H1/2(Γ )

is well defined for all frequencies ω . Hence we conclude the variational problem to

find u ∈ [H1(Ωs)]
3, u = gD on ΓD, such that

∫

Ωs

[
2µ e(u) : e(v)+λ divu divv

]
dx (8)
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−ω2

[
ρs

∫

Ωs

u ·vdx+ρ f 〈Tκ [u ·n],v ·n〉Γ

]
=

∫

Ωs

f ·v dx+

∫

ΓN

gN ·v dsx

is satisfied for all v∈ [H1(Ωs)]
3, v= 0 on ΓD. Since the bilinear form which is related

to the variational formulation (8) is coercive, injectivity ensures unique solvability

of the variational problem (8), see also [8, 9].

Theorem 1. Assume that ω ∈R is not a Jones frequency. Then there exists a unique

solution u of the variational problem (8).

Remark 1. Although boundary value problems of the exterior Helmholtz equation

are unique solvable, related boundary integral equations may suffer from spurious

modes which correspond to solutions of related interior eigenvalue problems for

the Laplacian. Formulations which are stable for all frequencies, are usually based

on complex linear combinations of different boundary integral operators, see, e.g.,

[2, 9]. However, when using a direct boundary integral approach as presented here,

this also leads to a stable formulation, see [14] for a further discussion.

In what follows we consider a frequency ω ∈ R which is not a Jones mode. If the

displacement field u is known as the unique solution of the variational problem (8),

we may use the boundary integral equation (6) to determine the pressure p. In the

case when κ2 is an eigenvalue of the interior Neumann eigenvalue problem, the

solution p as given in (7) is not unique. However, using the transmission conditions

(3) we find

p =−Tu ·n, (9)

in fact (u, p) is the unique solution of the coupled variational formulation (5). The

representation (9) can be used to modify the boundary integral equation (6) to obtain

a formulation which admits a unique solution p for all frequencies, for example we

may consider the boundary integral equation

[ 1

ρ f ω2
Dκ + iηD̃0

]
p+(

1

2
I+K′

κ)[u ·n]+ iηD̃0(T u ·n) = 0 on Γ ,

where D̃0 is the stabilized hypersingular boundary integral operator of the Laplacian

[13], and η ∈ R is some parameter to be chosen. For simplicity of the presenta-

tion we only consider the discretization of the variational formulation (8) by using

piecewise linear finite elements which are defined with respect to some admissible

triangulation of Ωs, and by using piecewise linear boundary elements on Γ . This

leads to the linear system




KFEM

h −ω2[ρsM
FEM

h +ρ f N
⊤
h V BEM

h Nh] N⊤
h ( 1

2
MBEM

h +KBEM

h )

( 1
2
M

BEM,⊤
h +K′

h
BEM)Nh

1
ω2ρ f

DBEM

h



(

u

p

)
=

(
f

0

)
.

Here, KFEM

h and MFEM

h are the finite element stiffness and mass matrices, respectively,

and V BEM

h , MBEM

h , KBEM

h , and DBEM

h are the Galerkin boundary element matrices, see,

e.g., [11], and Nh corresponds to the application of the normal component, u · n.
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From the standard theory, e.g., [13], we expect a second order of convergence when

measuring the error ‖u−uh‖L2(Ωs). Although the pressure p on the boundary Γ may

not be unique, the computation of the pressure p in Ω f by means of the exterior

representation formula

p̃(x) =−ρ f ω
2
∫

Γ
U∗

κ (x,y)[uh(y) ·ny]dsy +
∫

Γ

∂

∂ny

U∗
κ (x,y)ph(y)dsy for x ∈ Ω f

is unique, and we conclude a second order convergence of the pointwise error [13].

As a numerical example for the direct simulation we consider the Neumann

boundary value problem (1)–(4) with

Ωs :=
{

x ∈ R
3 : 0.8 < |x|< 1

}
, Ω f :=

{
x ∈ R

3 : 1 < |x|
}
,

where the exact solution is given by, r = |x|,

p(x) =
eiκr

r
for r > 1, u(r) = [c1u1(r)+ c2u2(r)]er for r ∈ (0.8,1),

and

u1(r) = −

√
λ + 2µ cos

r
√

ρsω√
λ+2µ

r
√

ρsω
+

(λ + 2µ)sin
r
√

ρsω√
λ+2µ

r2ρsω2
,

u2(r) = −

√
λ + 2µ sin

r
√

ρsω√
λ+2µ

r
√

ρsω
−

(λ + 2µ)cos
r
√

ρsω√
λ+2µ

r2ρsω2
.

Note that the constants c1 and c2 have to be chosen accordingly to satisfy the trans-

mission conditions (3). The material constants are given as E = 105 · 109 N/m2,

ν = 0.34, while the densities of the structure and of the fluid are chosen as

ρs = 1000kg/m3 and ρ f = 4500kg/m3, respectively. Recall that the speed of sound

is c = 1484m/s. As frequency we have chosen ω = 3090s−1 which corresponds to

an eigenfrequency of the hypersingular boundary integral operator Dκ . In Table 1

we present the relative errors of the displacement field both in the L2(Ω) and in

the energy norm, where we observe quadratic and linear convergence, as predicted.

In addition, we also give the pointwise error for the pressure which is evaluated in

x̂ = (2,0,0)⊤, again we observe a quadratic convergence as predicted [13].

Table 1 Convergence of the FEM/BEM approach for direct simulation

NFEM

‖u−uh‖L2(Ωs)

‖u‖L2(Ω)

‖u−uh‖H1(Ωs)

‖u‖H1(Ω)

|p(x̂)− p̃(x̂)|

1948 9.93 –2 2.56 –1 5.37 –2

15584 2.71 –2 1.45 –1 1.44 –2

124672 7.27 –3 7.62 –2 3.69 –3
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3 Eigenvalue analysis

In this section we discuss the solution of the eigenvalue problem which is related

to the transmission problem (1)–(4). Based on the coupled formulation (8) of the

transmission problem the following related eigenvalue problem is considered: Find

(ω ,u, p) with (u, p) 6= (0,0) such that

A(ω)

(
u

p

)
:=

(
−ω2ρSMS +KS −ρ f ω

2N∗VκN N∗( 1
2
I+Kκ)

( 1
2
I +K′

κ)N
1

ω2ρ f
Dκ

)(
u

p

)
=

(
0

0

)
,

(10)

where MS represents the mass term and KS the stiffness term of the structure, and

Nu = u|Γ ·n. The boundary integral operators depend nonlinearly on the wave num-

ber κ = ω/c, hence (10) is a nonlinear eigenvalue problem in ω . For the eigenvalue

problem (10), in addition to the requested eigenvalues we also obtain eigenvalues

which correspond to the Laplacian with a Neumann boundary condition. However,

in practice the latter can be filtered out very easily.

A Galerkin finite and boundary element discretization of (10) results in a nonlin-

ear matrix eigenvalue problem of the form

Ah(ωh)

(
u

p

)
=

(
0

0

)
. (11)

A rigorous numerical analysis of the Galerkin eigenvalue problem (11) can be car-

ried out within the framework of the concept of eigenvalue problems for holomor-

phic Fredholm operator-valued functions [15] and will be addressed in a forthcom-

ing paper. This concept provides comprehensive convergence results which include

error estimates for the eigenvalues and eigenspaces.

For the numerical solution of (11) we use the contour integral method [1]. This

method is suitable for the extraction of all eigenvalues which lie inside of a pre-

defined contour in the complex plane. An alternative approach for the numerical

solution of the nonlinear eigenvalue problem (11) which is based on polynomial

interpolation is presented in [3].

As a numerical example we consider the Neumann eigenvalue problem for the

spherical shell ΩS := {x ∈R3 : 4.95< |x|< 5} and for the fluid domain Ω f := {x ∈
R3 : |x|> 5}. For this example analytical approximations of the eigenvalues are de-

rived in [7]. The material constants for the shell are E = 207 · 109 N/m2, ν = 0.3
and ρS = 7669kg/m3. For the surrounding fluid, we choose c = 1483.24m/s. As

ansatz spaces for the Galerkin eigenvalue problem (11) we use piecewise linear fi-

nite elements and piecewise linear boundary elements as in the previous section.

The eigenvalues of practical interest are those which are lying close to the real axis,

since the imaginary part of an eigenvalue corresponds to the damping of the related

eigenfunction in time. As domain of interest for the eigenfrequencies f = ω/(2π)
we have chosen the strip { f ∈C : 1 < ℜ( f )< 90, −5 < ℑ( f )< 5}. In this domain

two analytical approximations are given in [7]. The results of the contour integral

method are presented in Table 2 for different meshes. The approximations of the
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eigenvalues on the two finest mesh levels match well with the analytical approxima-

tions.

Table 2 Approximations of the two smallest non–zero eigenvalues f = ω/(2π)

h/dof 0.5/8794 0.25/36792 0.15/109455 anal. approx.

(58.19,-1.44) (55.82,-1.18) (55.65,-1.16) 56.02

(58.26,-1.45) (55.84,-1.18) (55.66,-1.16)

(58.50,-1.48) (55.84,-1.18) (55.66,-1.16)

(58.62,-1.50) (56.03,-1.20) (55.78,-1.18)

(58.96,-1.54) (56.04,-1.21) (55.78,-1.18)

(83.61,-1.00) (71.47,-0.32) (70.45,-0.31) 70.52

(83.73,-1.03) (71.53,-0.32) (70.53,-0.31)

(84.51,-1.08) (71.63,-0.32) (70.53,-0.31)

(85.10,-1.14) (71.63,-0.32) (70.54,-0.31)

(85.47,-1.16) (71.72,-0.33) (70.60,-0.31)

(85.94,-1.18) (71.74,-0.33) (70.61,-0.31)

(87.96,-1.37) (71.80,-0.34) (70.62,-0.32)

4 Conclusions

The symmetric formulation of finite and boundary element methods for vibro–

acoustic interface problems turns out to be stable for almost all freqencies. If we

exclude Jones frequencies, no spurious modes appear. In fact, we can avoid the use

of combined boundary integral equation formulations such as Brakhage/Werner and

Burton/Miller, see, e.g., [2, 14], which require sufficient smoothness of the cou-

pling interface. For the acceleration of the numerical simulations one may use fast

boundary element methods such as the adaptive cross approximation [11] or the

fast multipole method [2]. In addition, the design of appropriate preconditioned it-

erative solvers is a challenging task not only for the direct simulation. In fact, the

contour integral method allows an reliable and accurate computation of eigenval-

ues within a given domain of interest, without any knowledge on the number and

on the position of eigenvalues. Applications of the proposed methodologies include

the simulation and eigenvalue analysis of ships, see Fig. 2 for a simplified model

of a submarine made of titanium. The length is 12m, its diameter 2m, and its wall

thickness 0.1m. The first eigenfrequency is f = 52.12−0.007i, the related eigenso-

lution is given in Fig. 2. This simulation was done by using 67.145 tetrahedral finite

elements and 17.372 triangular boundary elements, which results in 74.523 global

degrees of freedom.
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Fig. 2 Real and imaginary part of an eigensolution of a simplified submarine
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