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1 Introduction

At a first glance asymptotic expansions and domain decomposition are two alter-
natives to efficiently solve multi scale elasticity problems. In this paper we will
combine these two methods: we will use, for several types of problems, asymptotic
expansions and show that for an efficient implementation of problems obtained at
the asymptotic limit it may be useful to use domain decomposition type algorithms.
In particular we will consider problems with heterogenous or non heterogenous thin
layers(see Fig 1 a) et b)). To directly solve such problems bya standard finite el-
ement method is too expensive from a computational point of view. That is why
specific asymptotic expansions are used and allow to replacethe original problem
by a set of problems defined on a new domain where the thin layeris replaced by
a line in 2D or a surface in 3D (see Fig 1 c)). In addition particular jumping condi-
tions are defined on this new interface yielding a non standard problem which can
be solved by a Neumann-Neumann domain decomposition algorithm. The paper is
organized as follows: In Section 2 we review of a domain decomposition algorithm
on an elasticity problem, in Section 3 we consider a thin layer of heterogeneities
which can be holes or elastic inclusions and, finally, in Section 4 we consider a
multi-materials with a thin layer with high ratio in material properties.

2 Domain decomposition algorithm: general setting for an
elasticity problem

The aim of this paragraph is to specify the notations. We consider a standard linear
elasticity problem:















divσ ε = 0 in Ω ε

σ ε = Ae(uε ) in Ω ε

σ ε n = F onΓF

uε = 0 onΓ0

(1)
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lier 2 krasucki@math.univ-montp2.fr · Departement of Civil and Building
construction engineering, and architecture, UniversitàPolitecnica delle Marche, Ancona
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The mechanical characteristics of the multi-material structure are described by the
elasticity tensorA. Each material is isotropic butA is indeed material dependent. In
the sequel we will omit this constitutive equation. The structure is clamped on a part
Γ0 ⊂ ∂Ω (of surface measure> 0) and a densityF of surface forces is applied on
the complementary partΓF . In a variational form this problem writes

A(u,v) = L(v) for all v ∈V, with A(u,v) =
∫

Ω
Ai jkℓekℓ(u)ei j(v) dx. (2)

Let us mention that the variational form is always used to discretize the problem,
nevertheless in order to simplify notations we will use either partial differential
equations or variational form. The same problem will be considered in sections 3
and 4, where the the domain differs with respect to the heterogeneities. We will ex-
plain how the domain decomposition algorithm is adapted in each situation. In order
to use a primal domain decomposition to solve the problem we transform the prob-
lem on the entire domain in a problem on the interface. After splitting the domain
in non overlapping subdomains we introduce an additional unknown,λ = Tr(u) on
the interface. For simplicity reasons we will consider hereonly two sub-domains
and only a first level preconditioner. To solve the original problem is equivalent to
solving the following problem on each subdomain:















divσ(ui) = f Ω in Ωi

σn = f Γ on∂ΩF ∩Ωi

ui = ud on∂Ωu ∩Ωi

ui = γ onΓ

(3)

By linearityui = ui
0+ui

γ whereui
0 is the solution of (3) withui

0 = 0 onΓ andui
γ is

the solution of (3) withf Ω = 0, f Γ = 0. In order to settle the interface problem we
write the continuity of the normal stress on the interface:

σ(u1)n1+σ(u2)n2 = σ(u1
γ )n

1+σ(u1
0)n

1+σ(u2
γ )n

2+σ(u2
0)n

2 = 0

Using the Steklov Poincaré operatorS which is defined as follows: forγ given on
Γ (the sub-domains interface )

Siγ = σ(ui
γ )n

i

whereni denotes the outer normal onΓ , the interface problem writes:

S1γ + S2γ =−σ(u1
0)n

1−σ(u2
0)n

2 (4)

In variational form

S1(γ,v)+ S2(γ,v) =−L(σ(u1
0)n

1,v)−L(σ(u2
0)n

2,v)

This problem will be solved using a iterative method, the preconditioner isM =
α1S−1

1 +α2S−1
2 with α1+α2 = 1. ([6], [3])
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The parallel between this approach and the one used in the asymptotic analysis
(as described in 1) is that a particular problem has to be solved on the interface, the
next sections will specify this concept.

3 Structure with a thin layer of heterogeneities

Let us consider a three-dimensional structure with small identical heterogeneities
periodically distributed along a surfaceω . Let ε be a small dimensionless param-
eter which characterizes the diameter and the periodic arrangement of the hetero-
geneities. We denoteBε the layer of thicknessε containing the heterogeneities cen-
tered onω (see Fig. 1 a)).

ω

B
ε

ε
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ω

ε

B
ε

Γ0

ω

Γ0

Fig. 1 a) Heterogeneous layer b) Homogeneous layer c) Limit domain

The domainΩ containsIε the set of identical heterogeneities of diameterεD
andε-periodically distributed in the vicinity of the interior surfaceω of equation
x1 = 0. We consider the problem (3) with two types of inclusions: cavities and elastic
inclusions. The displacement fielduε and the stress fieldσ ε , satisfy, respectively,
equilibrium equation (1).

Notice thatΩ is a domain with a number of heterogeneities which depends onε.
For the elastic inclusionsAS andAI (the elasticity tensor in the structure, respectively
in the inclusions) are of same order of magnitude.

The asymptotic analysis of this problem forε → 0 provides a model describing
the linear elastic behavior of the structure on a simplified domain denoted byΩ0

where the layerBε becomes the surfaceΓ (see Fig. 1 c)). More precisely, by as-
suming thatuε ≃ u0+εu1, the initial problem (1) is approximated by two new ones
where the layer of heterogeneities is replaced by a surface on which particular jump
conditions are defined.

The zeroth order approximationu0 is the solution of the following transmission
linear problem :







divσ0 = 0 in Ω0

σ0n = F onΓF

u0 = 0 onΓ
(5)

Notice that there are no jumps onΓ for the outer approximation. In other words, at
the zero order the outer approximation does not consider theheterogeneities. Thus
this problem can be solved using a standard finite element procedure.
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The first order approximationu1 is the unique solution of the following boundary
value problem (with transmissions conditions onΓ ):























divσ1 = 0 in Ω0\Γ
σ1n = 0 onΓF

u1 = 0 onΓ0
[

u1](x̂) = Gd
(

u0(0, x̂) ;
[

Vi j
]∞)

[

σ1e1
]

(x̂) = GnS
(

u0(0, x̂) ;
∫

Y Ti j(y) dy
)

(6)

where Vi j are the solutions of nine elementary problems defined on one rep-
resentative cellY ([5],[4]) and Ti j are the stress fields associated withVi j and
[

Vi j
]∞

= limy1→+∞ Vi j − limy1→−∞ Vi j−

Gd has the same structure for the different types of inclusions, whileGnS depends
on the inclusion:

Gd =
∂u0

i

∂x j
(0, x̂)

[

Vi j]∞
(7)

i) in the elastic inclusions case one has:

GnS = div
(

|I|
(

A
S −A

I)
e
(

u0(0, x̂)
)

−
∂u0

i

∂x j
(0, x̂)

∫

Y
T i j(y) dy

)

(8)

ii) in the cavities case one has:

GnS = div
(

|I|AI
e
(

u0(0, x̂)
)

−
∂u0

i

∂x j
(0, x̂)

∫

Y
Ti j(y) dy

)

(9)

Let us emphasize that, for the first order problem,Gd andGnS are given and depend
on the first and second order derivatives of the zeroth order problem. This is not an
issue at the domain decomposition level, while, at the implementation level, since
the solutionu0 is only of classC0, a regularization is needed. In practice, an efficient
way to implement the jump conditions in problem (6) is to solve this problem by a
domain decomposition type algorithm which will be detailedhereafter.

Finally, the generic form of the first order problem, (6) is given by:






















−divσ(u) = 0 in Ω
σn = 0 on∂ΩF

u = 0 on∂Ωu

[u] = Gd onΓ
[σn] = GnS onΓ

(10)

whereGd andGnS denote, respectively, the gap in displacements and normal stresses
on Γ . By using the linearity of the problem, we will search, in each subdomain a
solution of the form

ui = wi +βizi

whereβi are two real numbers conveniently chosen andzi are the solutions of the
following two independent problems:
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−divσ(zi) = 0 in Ωi

σn = 0 on∂ΩF ∩Ωi

zi = 0 on∂Ωu ∩Ωi

zi = Gd onΓ

(11)

Notice that
−divσ(wi) =−divσ(ui −βizi) = 0

The transmission conditions forwi are given by:

{

[w] = [u]−β1Gd +β2Gd = (1−β1+β2)Gd

[σn] = [u]+β1σ(z1)n−β2σ(z2)n = GnS+β1σ(z1)n−β2σ(z2)n

If we choose 1−β1+β2 = 0 thenw is continuous on the interfaceΓ , while the
normal stress is discontinuous at the interface.

By introducing the Steklov Poincaré, as described above, the unknownγ on the
interface is the solution of the following problem:

(S1+ S2)γ =−σ(w1
0)n

1−σ(w2
0)n

2+GnS+β1σ(z1)n1−β2σ(z2)n2

Let us remark that this equation differs from (4) only on the right hand side. In
this situation the solution of the entire problem is not as regular as in section 3.
Here, because of the jumps, the solution is not inH1(Ω), this is why the norms
used in the following numerical simulations areL2(Ω). Thus as the operator does
not change, the same algorithms (and in particular the same preconditioner) may be
used to solve the problem with the same performance and no additional analysis is
required to prove efficiency.

Fig. 2 a) Mesh used for the asymptotic computation b) Fine mesh forε = 1
20

In order to numerically validate this approach we consider a2D case whereΩ
is a plane domain containingN ε holes of diameterεD Notice that the domain and
thus the number of holes depends onε. A reference solutionuε

h of the problem (1) is
computed on a large mesh (see Fig 2 b)) and compared with the asymptotic solution
u0

h andu0
h + εu1

h obtained by solving the problems (5) and (6) on a corse mesh (see
Fig. 2 a)). This comparison is performed by computing the relative error for the
L2-norm (see table (1)).
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Table 1 L2-errors norms computed inΩ ε

ε Nb elements dofs
||uε

h −u0
h||L2

||uε
h||L2

||uε
h − (u0

h + εu1
h)||L2

||uε
h ||L2

1/20 13348 54938 0.013501216 0.001225971
1/40 27668 113530 0.006689361 0.000475813
1/80 57164 234050 0.003281498 0.000176916

4 Multimaterials with strong curved interface

In this section we analyze the mechanical behavior of a particular structural as-
sembly, which is constituted by an elastic shell-like inclusion with high rigidity
surrounded by two three-dimensional elastic bodies.

Let Ω+ andΩ− be two disjoint open domains with smooth boundaries∂Ω+ and
∂Ω−. Let ω := {∂Ω+∩∂Ω−}

◦ be the interior of the common part of the bound-
aries which is assumed to be a non empty domain inR

2. Let θ ∈ C 2(ω ;R3) be an
immersion such that the vectorsaα(y) := ∂α θ(y) form the covariant basis of the

tangent plane to the surfaceS := θ (ω). We note witha3(y) := a1(y)∧a2(y)
|a1(y)∧a2(y)|

the unit

normal vector toS. We insert an intermediate curved layer movingΩ+ andΩ− in
the a3 and−a3 directions, respectively, by an amount equal totε > 0, whereε is
a small dimensionless real parameter. Then letΩ±,ε := {xε := x± tεa3; x ∈ Ω±},
Ω m,ε :=ω×]− tε , tε [, andΩ ε := Ω−,ε ∪Ω+,ε ∪Ω m,ε , as shown in Fig. 1 The struc-
ture is clamped onΓ ε

0 ⊂ (∂Ω ε \Γ m,ε ). We consider thatS coincides with the middle
surface of the shell-like inclusionΩ m,ε . Moreover, the shell thicknesstε depends lin-
early onε, so thattε = εt. For a more detailed treatment of this asymptotic problem
in a general curvilinear framework, the reader can refer to [1], [2].

The physical variational problem defined over the variable domainΩ ε is

{

Finduε ∈V ε := {vε ∈ H1(Ω ε ;R3); vε |Γ ε
0
= 0}

Aε
−(u

ε ,vε)+Aε
+(u

ε ,vε)+Aε
m(u

ε ,vε ) = L(vε ) for all vε ∈V ε ,
(12)

where A is defined as in (2).
The functionalL(·) is the linear form associated with the applied forces. Here

Ai jkℓ,ε := λ ε gi j,εgkℓ,ε + µε(gik,ε g jℓ,ε + giℓ,εg jk,ε) are the contravariant components
of the elasticity tensor, wheregi j can be considered as the curvilinear version of
the Kronecker’s delta. Let us suppose that the Lamé’s constants of the isotropic
materials satisfy the following dependences with respect to ε: λ±,ε = λ±, µ±,ε =
µ±, λ m,ε = 1

ε λ m, µm,ε = 1
ε µm.

As shown in [1], the asymptotic expansion method applied to the physical prob-
lem (12) leads to a simplified model for the assembly, in whichthe layer inclusion
is reduced to its middle surface asε tends to zero. Thus the presence of the layer is
replaced by a surface shell like energy at the interface which corresponds to a partic-
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ular membrane transmission condition between the two three-dimensional bodies.
The main result is contained in the following theorem:

Theorem 1.The leading term u0 of the asymptotic expansion u(ε) = u0 + εu1 +
ε2u2+ ..., is the unique solution of the following limit problem:

{

Find u0 ∈VM such that
A−(u0,v)+A+(u0,v)+Am

M(u0,v) = L(v) for all v ∈VM
(13)

where VM := {v ∈ H1(Ω+ ∪ω ∪Ω−;R3); v|ω ∈ H1(ω ;R2)×H
1
2 (ω), v|Γ0 = 0},

and
Am

M(u0,v) = 2t
∫

ω
aαβ στeστ(u0)eαβ (v) dy, (14)

is the bilinear form associated with the membrane behavior of the shell, aαβ στ is the
elasticity tensor of the shell and eαβ (u) := 1

2(uβ |α + uα |β ) is the change of metric
tensor.

Remark. In the simplified model we obtain a membrane transmission condition at
the interface between the two three-dimensional bodies, which can be interpreted as
a curvilinear generalization of the Ventcel-type transmission condition obtained in
[1]. Indeed, by integrating by parts problem (13), one has

{

−div σ± = f in Ω±,
u0 = 0 onΓ0,

{[

σα3]= div (nαβ ) in ω ,
[

σ33]= nαβ bαβ in ω ,
(15)

whereσ i j
± :=Ai jkℓ

± ekℓ(u0) and nαβ :=2taαβ στeστ(u0|ω) represent, respectively, the
Cauchy stress tensor and the membrane stress tensor of the shell,

[

σ i3
]

:= σ i3
+ −σ i3

−

represents the stress jump at the interfaceω , andbαβ is the second fundamental
form associated to the shell middle surface.

In order to solve the problem (13) we introduce a specific domain decomposition
algorithm, more precisely, we construct the interface problem. We consider three
subdomainsΩ+ := Ω (1), Ω− := Ω (2), and the shellΩ m. For the two 3D domains,
Ω1,Ω2 we introduce the corresponding Steklov Poincaré operatorand we observe
that the domainΩ3 is the interface. Thus, in a variational form, the compatibility
condition on the interface writes :

S1(γ,v)+ S2(γ,v)+Am
M(γ,v) = L(−σ(u1

0)n
1−Lσ(u2

0)n
2,v) (16)

This problem can be solved by a Neumann-Neumann algorithm aswell because,
compared to (4) we add in the right hand side a term wich is symmetric and positive
defined.

As a numerical example, we consider an axisymmetric problemof two thick
cylinders bonded together with a cylindrical shell with high rigidity subjected to an
internal pressure (Ecyl = 5e05,Eshell = 5e07,ν = 0.3, t=0.1,Rmax = 6). We choose
this particular geometry because it is characterized by an immediate mechanical
interpretation. Moreover we can compute an exact solution for this problem. We
tested the domain decomposition by using two subdomains (the shell is ”glued”
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to another subdomain) and three subdomains and by studying the influence of a
Neumann-Neumann preconditioner on the number of iterations. The preliminary
results are shown in the following table. As we can see the number of iterations
decreases drastically when adopting a preconditioner.

Table 2 Mesh:Nel = 11020,Nel,shell = 580

Subdomains Iterations Iterations with preconditioner

2 69 6
2+1(shell) 70 46

In the actual simulations we can use membrane or shell elements. The shell is
more robust but also more computationally demanding. In ourexample we used
a membrane element. The drawback is that the operator is not invertible (that is
needed in the preconditioning step) and that explains why the results with two do-
mains are far better than with three domains. Hence, our testexample does not
behave totally as a pure membrane. This feature disappears when shell elements are
used or when the problem has a pure membrane behavior.
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