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1 Introduction

Domain decomposition methods are both highly successful parallel solvers and also
important modeling tools, since problems in subdomains can be treated by adapted
methods to the physics in each subdomain. Subdomain boundaries are therefore
rarely straight lines. The focus of this paper is to study the influence of curvature on
transmission conditions used in optimized Schwarz methods. For straight interfaces
and simple geometries, optimized interface conditions are typically determined us-
ing Fourier analysis, see for example [4] and references therein. Asymptotically,
these optimized conditions are still valid for curved interfaces, as shown in [5, 6].
Since however the curvature is the most important information for a smooth curve,
we want to study in this paper if and how the interface curvature influences the
constants in the optimized parameters.

We consider the model problem

(∆ −η)u = f , on Ω = R2, η > 0, (1)

and we require the solution to decay at infinity. As shown in Fig. 1 on the left,
we decompose Ω into two overlapping subdomains Ω1 = (−∞,a(y))× R and
Ω2 = (b(y),∞)×R, where Γ1 given by a(y) and Γ2 given by b(y) are smooth curves
satisfying a(y)≥ b(y). A general parallel Schwarz algorithm is then given by

(∆ −η)un
i = f in Ωi,

Bi(un
i ) = Bi(un−1

j ) on Γi, 1 ≤ i ̸= j ≤ 2, (2)

where Bi, i = 1,2, are transmission conditions to be chosen. If Bi, i = 1,2 are cho-
sen as ∂ni +DtNi, with DtNi the Dirichlet to Neumann operators, the iterates will
converge in two steps [4]. These operators are however non-local, and thus difficult
to use in practice. Therefore, local approximations are used in optimized Schwarz
methods. We study in what follows such local approximations, obtained by micro-
local analysis, and by studying a circular model problem, with the goal to investigate
how the curvature influences these approximations.
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2 Transmission conditions based on micro-local analysis

Micro-local analysis is a well established technique for the design and study of
absorbing boundary conditions, where it is used to approximate the DtN, see [2]
and references therein. We use in this section micro-local analysis to develop and
analyze transmission conditions. As in [2], we consider local coordinates composed
by the curvilinear abscissa s and the variable r along the normal direction. In these
local coordinates, the model problem (1) can be rewritten as

L u := ∂rru+
κ
h

∂ru+
1
h

∂s(
∂su
h

)−ηu = f , (3)

where κ = κ(s) is the curvature of the curve Γi at the parameter s, and h = h(r,s) =
1+ rκ(s). The symbol of the operator L is given by

L̂ = ∂rr +
κ
h

∂r +
i
h

∂s(
1
h
)ξ − 1

h2 ξ 2 −η . (4)

A pseudodifferential operator P is defined by Pu(x) :=
∫

eix·ξ p(x,ξ )û(ξ )dξ , pro-
vided its symbol p(x,ξ ) ∈ Sm, i.e. for every compact set K in Rn and for ev-
ery α ,β there exists c = c(α,β ,K) s.t. for all (x,ξ ) ∈ K ×Rn, |∂ α

ξ Dβ
x p(x,ξ )| ≤

c(1+|ξ |)m−|α |. Based on the Nirenberg’s factorization theorem, there exist two clas-
sical pseudo-differential operators Λ− and Λ+ of order +1, depending smoothly on
r, such that

L u = (∂r +Λ−)(∂r +Λ+)u, (5)

which can be expanded as

L u = ∂rru+(Λ−+Λ+)∂ru+op(∂rλ+)u+Λ−Λ+u, (6)

where op(∂rλ+) is the operator whose symbol is ∂rλ+. In (5) and (6), the symbol
’=’ must be interpreted as equal up to a C∞-regularizing operator, since the symbols
of Λ+ and Λ− are explicitely defined by the factorization process up to a symbol in

Γ2 = b(y)

Γ1 = a(y)
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Fig. 1 An arbitrary domain decomposition with curved interfaces (left) and a circular domain
decomposition (right)
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S−∞. Identifying (3) and (6) we get

Λ−+Λ+ =
κ
h
, op(∂rλ+)+Λ−Λ+ =

1
h

∂s(
∂s

h
)−η . (7)

Due to the integral representation formula of pseudo-differential operators, the op-
erators Λ− and Λ+ are determined by their symbols. Using the calculus of pseudo-
differential operators, system (7) can be written at the symbol level,

λ−+λ+ =
κ
h
,

+∞

∑
α=0

(−i)α

α!
∂ α

ξ λ−∂ α
s λ++∂rλ+ =−η −h−2ξ 2 +

i
h

∂s(
1
h
)ξ , (8)

where λ± ∼ ∑+∞
j=−1 λ±

− j are the symbols of Λ±. The goal is now to determine the
symbols λ− and λ+: from the first equation in (8), we get

λ−
− j +λ+

− j = 0, if j ̸= 0 and λ−
0 +λ+

0 =
κ
h
. (9)

By identifying the homogeneous symbols of highest degree, we obtain

λ−
1 λ+

1 =−h−2ξ 2 −η , (10)

where η is considered to be an operator of order 2, see Section 3 of [2] for details.
Therefore, we have

λ+
1 =

√
h−2ξ 2 +η and λ−

1 =−
√

h−2ξ 2 +η . (11)

Going further with the identification of the homogeneous symbols of the next higher
degree, we find a relation between the unknowns λ−

0 and λ+
0 ,

λ−
1 λ+

0 +λ−
0 λ+

1 − i∂ξ λ−
1 ∂sλ+

1 +∂rλ+
1 =

i
h

∂s(
1
h
)ξ . (12)

Eliminating λ−
1 and λ−

0 , we get

λ+
0 =

1
2λ+

1
(

κ
h

λ+
1 + i∂ξ λ+

1 ∂sλ+
1 +∂rλ+

1 − i
h

∂s(
1
h
)ξ ). (13)

We can derive a recursive formula from similar relations for lower degrees of ho-
mogeneity. First, we rewrite the left-hand side of the second equation in (8) as

+∞

∑
α=0

(−i)α

α!

+∞

∑
j=−1

∂ α
ξ λ−

− j

+∞

∑
k=−1

∂ α
s λ+

−k +
+∞

∑
l=−1

∂rλ+
−l . (14)

Since ∂ α
ξ λ−

− j∂ α
s λ+

−k ∈ S−( j+k+α), the homogeneous part of degree −m in (14) for
any non-negative integer m is
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m+2

∑
α=0

(−i)α

α! ∑
j+ k = m−α,
j ≥−1,k ≥−1

∂ α
ξ λ−

− j∂
α
s λ+

−k +∂rλ+
−m.

Identifying symbols of the same homogeneity in (8) leads to

m+2

∑
α=0

(−i)α

α! ∑
j+ k = m−α,
j ≥−1,k ≥−1

∂ α
ξ λ−

− j∂
α
s λ+

−k +∂rλ+
−m = 0.

Using that λ−
−m−1 = −λ+

−m−1, from the previous equation, the symbol λ+
−m−1 for

m ≥ 0 can be recursively expressed from homogeneous symbols of higher order by

λ+
−m−1 =

1
2λ+

1
( ∑

j+ k = m,
j ≥ 0,k ≥ 0

λ−
− jλ

+
−k +

m+2

∑
α=1

(−i)α

α! ∑
j+ k = m−α,
j ≥−1,k ≥−1

∂ α
ξ λ−

− j∂
α
s λ+

−k +∂rλ+
−m).

(15)
Let ℓ be a positive integer, and µ be the symbol of the pseudo-differential oper-
ator op(µ) defined on Γi × (−δ ,δ ), i = 1,2, such that ∑−1≤ j≤p λ+

− j − µ is of or-
der (1/

√η)ℓ−1 for all sufficiently large p. Denoting by µ̃ the symbol defined on
Γi, i = 1,2 by µ̃ := µ|r=0, and choosing as transmission condition Bi = ∂ni +op(µ̃)
on Γi, we obtain the MATCs (Micro-local Analysis based Transmission Conditions)
of order ℓ/2 as

Bi = ∂ni +op( ∑
−1≤ j≤ℓ−2

λ+
− j), on Γi, i = 1,2. (16)

From (15), note that λ+
−m−1 still contains the term λ+

1 =
√

h−2ξ 2 +η , and thus re-
sults in non-local transmission conditions. To obtain local transmission conditions,
we use a Taylor expansion in ξ of the symbols λ+

− j, −1 ≤ j ≤ 2 to the order shown
as index in the parentheses below, and obtain the following MATCs:

MATC1 Bi(u) = ∂niu+op((λ+
1 )0)u = ∂niu+

√ηu;
MATC2 Bi(u) = ∂niu+op((λ+

1 )0 +(λ+
0 )0)u = ∂niu+(

√η + κ
2 )u;

MATC3 Bi(u)= ∂niu+op(
2
∑

j=−1
(λ+

− j)0)u= ∂niu+(
√η+ κ

2 −
κ2

8
√η +

κ3+ d2

ds2 κ(s)
8η )u;

MATC4 Bi(u)= ∂niu+op(
1
∑

j=−1
(λ+

− j)1)u= ∂niu+(
√η+ κ

2 −
1
8

κ2
√η )u−

d
ds κ(s)

2η ∂su;

MATC5 Bi(u) = ∂niu+op((λ+
1 )2)u = ∂niu+

√ηu− 1
2
√η ∂ 2

s u;

MATC6
Bi(u) = ∂ni u+op(∑2

j=−1(λ
+
− j)−2)u = ∂ni u+(

√η + κ
2 − 1

8
κ2
√η + 1

8
κ3+ d2

ds2 κ(s)
η )u

+(
d
ds κ(s)

2η − 13
8

κ(s) d
ds κ(s)

η
3
2

)∂su− ( 1
2
√η − 1

2
κ
η + 13

16
κ2

η
3
2
− 7

8
2κ3+ d2

dx2 κ(s)
η2 )∂ 2

s u,

where the MATC1–3 are of order 0, MATC4 is of order 1, and MATC5 and MATC6
are of order 2. Note how the curvature κ(s) enters these transmission conditions.
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3 Transmission conditions based on a circular model problem

For optimized Schwarz methods, transmission conditions are often analyzed and
optimized for a model problem, see [4]. Following this principle, we consider a
circular decomposition of the domain Ω = R2 as shown in Fig. 1 on the right,

Ω̃1 = {(x,y)|
√

x2 + y2 < R1 = R+L}, Ω̃2 = {(x,y)|R2 = R <
√

x2 + y2 < ∞}.

In this setting, the curvature of the interface enters naturally, κ(s) = 1/R. Using
polar coordinates, a general Schwarz algorithm for this decomposition is

∂rrun
i +

1
r ∂run

i +
1
r2 ∂θθ un

i −ηun
i = f in Ω̃i,

Bi(un
i ) = Bi(un−1

j ) on r = Ri, 1 ≤ i ̸= j ≤ 2.
(17)

In the classical Schwarz algorithm, one uses for Bi the identity operator in (17).
Using Fourier series in the angular variable, we obtain after a short calculation for
the convergence factor ρcla in this case (for details of such calculations, see [3])

ρcla = ρcla(k,R,L,η) :=
Ik(

√ηR)
Kk(

√ηR)
Kk(

√η(R+L))
Ik(

√η(R+L))
, ∀k ∈ R, (18)

where Ik(·) and Kk(·) are the modified Bessel functions of the first (exponentially
increasing) and the second kind (exponentially decreasing), see [1]. Hence, for an
overlap L > 0, the classical Schwarz algorithm converges, with the asymptotic esti-
mate

sup
kmin≤k≤kmax

ρcla = 1−GminL+O(L2), Gmin =
1

RIkmin(
√ηR)Kkmin(

√ηR)
,

where kmin and kmax denote the estimates of the lowest and highest relevant numer-
ical frequencies respectively. If there is no overlap, the method does not converge.

Optimized Schwarz methods are based on linear operators Si, i = 1,2 along the
interface, here in the θ direction, with symbols σi, and Bi(u) = ∂ru− Siu in (17).
This results in methods with convergence factors ρopt(k,L,R,η ,σ1,σ2) given by
(for details, see [3])

ρopt =

∂rKk(
√ηr)

Kk(
√ηr) +σ1(k)

∂rIk(
√ηr)

Ik(
√ηr) +σ1(k)

∣∣∣
r=R+L

·
∂rIk(

√ηr)
Ik(

√ηr) −σ2(k)
∂rKk(

√ηr)
Kk(

√ηr) −σ2(k)

∣∣∣
r=R

·ρcla. (19)

We can see from (19) that the optimal choice for which ρopt vanishes is σ1(k) =
− ∂rKk(

√ηr)
Kk(

√ηr) |r=R+L and σ2(k) =
∂rIk(

√ηr)
Ik(

√ηr) |r=R, again the symbol of the non-local DtN
operator. Optimized Schwarz methods use local approximations of the form

σi(k) = pi +qik2, i = 1,2, (20)
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and determine pi, qi such that the convergence factor ρ(k,L,R,η , p1, p2,q1,q2) is
small. These transmission conditions are then easy to use and inexpensive. Simple

approximations are obtained by Taylor expansion of the approximation
√

η + k2/R2
i

of the optimal symbol: T0 (Taylor of order zero) is given by p1 = p2 =
√η , q1 =

q2 = 0, and leads with the estimate kmax =
πR
h , where h is the mesh size, to the

asymptotic convergence factor bounds 1− 4
√

2η 1
4
√

h+O(h) with overlap L = h,
and 1−4

√ηπ−1h+O(h2) without overlap (still convergent!). T2 (Taylor of order
two) is obtained with pi =

√η , qi =
1

2
√ηRi

, i = 1,2, and leads to the bounds 1−

8η 1
4
√

h+O(h) with overlap L = h, and 1−8
√ηπ−1h+O(h2) without overlap. It

is interesting to note that the curvature 1/R does not play a role in the asymptotic
convergence factor estimates!

Optimized transmission conditions are based on minimizing the maximum of
the convergence factor: let COO0 = {p1 = p2 > 0,q1 = q2 = 0}, COO2 = {p1 =
p2 > 0,q1 = q2 > 0} and C2-sided = {p1 > 0, p2 > 0,q1 = q2 = 0}. By solving the
min-max problems

min
p1,p2,q1,q2∈CI

( max
kmin≤k≤kmax

|ρ(k,L,R,η , p1, p2,q1,q2)|), (21)

where the index I ∈ {OO0,OO2,2-sided}, we can determine the optimized choice
of the parameters in each case. The corresponding optimized transmission con-
ditions are then called OO0 (optimized of order 0), OO2 (optimized of order 2)
and 2-sided (two-sided optimized) Robin transmission condition. Using asymp-
totic analysis, see [3] for details, we obtain for example for OO0 (q1 = q2 = 0 )

p1 = p2 = 2−1G
2
3
minh−

1
3 and maxk |ρOO0|= 1−4G

1
3
minh

1
3 +O(h

2
3 ) with overlap L= h,

and p1 = p2 = 2−
1
2 G

1
2
minπ 1

2 h−
1
2 and maxk |ρOO0|= 1−2

3
2 G

1
2
minπ− 1

2 h
1
2 +O(h) with-

out overlap. Note that now also the convergence factor depends on the curvature
1/R through Gmin. However, limkmin→0 Gmin = 2

√η , independent of R.

4 Comparison of the two families of transmission conditions

We compare now the transmission conditions derived by micro-local analysis to the
ones obtained based on optimization. We notice that MATC1 and T0 are identical;
MATC5 looks like T2, but without the curvature dependence. In fact, MATC5 is
exactly the Taylor condition of order 2 for a straight interface, see [4]. Next, we plot
in Fig. 2 all the convergence factors of the Schwarz algorithm (17) with the various
transmission conditions for a circular decomposition. We observe that MATC2-4
perform similarly to T2. Since MATC2-4 are of order ≤ 1, we conclude that involv-
ing the curvature does improve the performance. It also seems that MATC5 performs
quite well. However, this is not always the case: we show a comparison between the
three second order transmission conditions in Fig. 3. We can see that MATC5 is
much more sensitive to R (1/R is the curvature) than the other two, both in the case
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Table 1 Number of iterations required by the Schwarz algorithm with different transmission con-
ditions with overlap L = h and without overlap (in parentheses)

h Cla MATC1(T0) MATC2 MATC3 MATC4 MATC5 T2 OO0 OO2 2-sided
1/50 332 26(310) 20(177) 20(173) 22(208) 17(370) 18(1081) 16(52) 14(48) 41(41)

1/100 684 36(597) 29(354) 27(331) 32(410) 16(644) 23(1832) 21(75) 13(57) 35(51)
1/200 1279 51(1163) 40(662) 39(646) 42(784) 17(1033) 29(3048) 26(101) 14(62) 27(61)
1/400 2919 71(2236) 53(1296) 53(1236) 59(1519) 22(1536) 39(4294) 32(151) 14(70) 23(71)

with and without overlap: the optimized transmission condition performs always
better than the other two; the MATC5 gets its best performance around R = 0.5 (this
is exactly the case of Fig. 2), it performs as T2 at R = 1, since then the approxi-
mation is identical, and with increasing R it performs worse and worse. We finally
note that MATC6 does not perform well: in the middle of Fig. 2, we see that near
k = 1.5 the convergence factor blows up. Hence MATC6 is not a good choice as
transmission condition.

5 Numerical experiments

We perform numerical experiments for a model problem in polar coordinates,

∂rru+ 1
r ∂ru+ 1

r2 ∂θθ u−ηu = f (r,θ) in Ω ,

u = 0 on ∂Ω ,
(22)

where Ω = (0,1)× (0,2π) is decomposed into Ω = Ω1 ∪Ω2, with Ω1 = (0,R+
L)× (0,2π) and Ω2 = (R,1)× (0,2π), and L ≥ 0 is the overlap. We use a finite
difference scheme on a uniform grid with mesh size h to simulate directly the error
equations, f = 0, for R = 0.5 and η = 2, and a random initial guess is chosen so that
all the frequency components are present in the initial error. The number of iterations
required by the parallel Schwarz method (17) are shown in Table 1. We clearly see

Fig. 2 Convergence factors of MATC1-5 and the Taylor conditions (left), MATC6 (middle), and
with optimized transmission conditions (right), for η = 2, overlap L = 0.01 and R = 0.5
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Fig. 3 The maxima of the convergence factors as functions of R with overlap (left) and without
(right)

that the transmission conditions based on optimization get better performance in this
experiment.

6 Conclusion

We presented two different approaches to take the curvature of interfaces into ac-
count in the transmission conditions of optimized Schwarz methods: micro-local
analysis, and analysis using a circular model problem. In both cases, we obtained
curvature dependent transmission conditions. A preliminary comparison shows that
the transmission conditions based on optimization perform better on the model prob-
lem, and that it could be important to take the curvature into account in transmission
conditions. In our opinion it is however essential to do a more thorough theoretical
and numerical study on more general geometry, where micro-local analysis is still
applicable, before we can definitely draw conclusions.
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