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1 Coupled Allen-Cahn/Cahn-Hilliard system

Coupled Allen-Cahn/Cahn-Hilliard (AC/CH) systems, ofteerund in phase-field
simulations, are prototype systems that admit simultasieodering and phase sep-
aration. Numerical methods to solve coupled AC/CH systerassaudied in e.g.,
[2, 6, 8, 9, 10, 11]. However, except for [9] and [10], the abavorks are based
on explicit methods that require very small time step sizadweance the solution
and need many time steps for long time integrations. Fullglicit methods enjoy
an advantage that the stability limit on the time step sizgrésatly relaxed. The
purpose of this paper is to study efficient and scalable #lgos based on domain
decomposition methods for the fully implicit solution of aupled AC/CH system.

There are several different ways to couple the AC and the GHtémns. Among
them we restrict our study to the original form introduce@3} which is
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whereu andv are functions ofk € Q ¢ R? andt € [0, +). Both u andv are
bounded with restrictionsi € [0,1], ve [-1/2,1/2] and (u£ V) € [0,1]. Here the
first equation in (1) is the Cahn-Hilliard equation in whichepresents a conserved
concentration field for the phase separation; the secoratiequn (1) is the Allen-
Cahn equation whenedenotes a non-conserved order parameter for the anti-phase
coarsening.

In (1), the mobilityc(u,v) = u(1—u)(1/4—V?) is degenerate at pure phases and
the densityp is a positive constant. The free energy functidgél, v) reads
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E(u,v) = A §(|Du\ +|0v| )+9(<D(u+v)+¢(u—v))+5u(1—u)—E dx, (2)

where®(z) = zInz+ (1—-2)In(1—2) andy, 6, a, B are all positive constants. It
then follows that

C;—E =—yAu+0®'(u+v)+ 6@ (u—v)—a(u—1/2),
3)
% = —yAV+0d' (u+Vv)— 00 (u—V)—BV.

In the current study we consider periodic boundary conalitifor bothu andv.
Other boundary conditions lead to similar numerical ressaittd the performance of
our proposed solver is not sensitive to them. The AC/CH sygt® is closed with
the above boundary conditions and an initial conditica u°, v=\? att = 0.

2 Discretizations

We restrict our study in this paper to the case of a 2-dimeégguare domaif2. A
second-order accurate cell-centered finite differenceR@)&cheme on a uniform
mesh is applied to the system. The details of the CCFD scheomitted here due
to the page limit.

Special attention should be paid when considering the timegration of the
AC/CH system (1). Because of the high-order spatial difféagion in the system,
explicit methods become impractical due to the severeicéstr on the time step
size. In order to relax the restriction and obtain the stestdie solution in an ef-
ficient way, we use the fully implicit backward Euler scheiée remark that due
to the co-existence of both diffusive and anti-diffusivens in the AC/CH system,
the backward Euler scheme is not unconditionally stablaeOinore efficient and
accurate implicit schemes will be studied in a forthcomiager.

After spatially discretizing the AC/CH system,andv are replaced with their
cell-centered valued andV respectively. Denote the spatial discretizations of the
right-hand-sides in the two equations in (1)M¢&J,V) andN(U,V) respectively,
the nonlinear algebraic system arising at each time stefsrea

Uk+l _Uk
%k(u k+1’vk+1) = Atk _ M(U k+l7vk+1) _ 07

Vk+1 _Vk (4)
=/Vk(U kJrl,VkJrl) — Atk _ N(U k+l7vk+1) _ 07

whereAt¥ is the step size and¥t1, Vk+1 are the solutions for thk-th time step.
Due to the multiple temporal scales admitted by the AC/CHesysAtX is adap-
tively controlled by a method that is analogous to the sveittbvolution/relaxation
method [5, 7]. More specifically, we start with a relativetya! time step sizé\t®
and adjust its value according to
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At€ = max(1/r,min(r,s)) Atk
. (W//kl(u k17Vk1),e/%<1(U“,V“))TII2) " (5)
[(A(UNVK), A(UEV)T2 ’

fork=1,2,3,..., where we use = 1.5 andp = 0.75.

3 Newton-Krylov-Schwar z solver

An inexact Newton method is applied to solve the nonlineatesy (4) at each time
step. We denote the solution of (4) at thh time step agvktl = (Uk+1 yiD)T,

The initial gues$( = WK is set to be the solution of the previous time step, then the
approximate solutiodX, 1 is obtained by

Xn+1:xn+/\nsm n:0717"' (6)

HereA, is the steplength determined by a linesearch procedur&gasdhe Newton
correction vector. To calculat®, for each Newton iteration, a right-preconditioned
linear system

IMHMS,) = —R(Xn) )

is constructed and solved approximately by using a GMRESodethat restarts
every 30 iterations. Herig(Xn) = (#4(Xn), M (%a))T is the nonlinear residual and

_ OR(%)

In %

(8)

is the Jacobian matrix.

In (4) M~ is an additive Schwarz preconditioner. We first partit@rinto np
non-overlapping subdomairg®,, p = 1,2,...,np. An overlapping decomposition is
obtained by extending each subdomain watmesh layers. Denote the overlapping
subdomain aQS . The one-level restricted additive Schwarz (RAS, [4]) preti-

tioner is
np

Mt=3 (R)Tinv(Bp)R). 9)

HereRg and (R%)T serve as a restriction operator and an interpolation operat
respectively; their detailed definitions can be found in [4]

In (9), inv(Bp) is either an exact or approximate inverse of the subdomaib-pr
lem defined byBp. Choosing proper boundary conditions for the subdomaib-pro
lems has a great impact on the convergence of the RAS prdimneti Since the
AC/CH system (1) contains two differential equations wiiffedent orders, it is
natural to impose different boundary conditions. For thst faquation in (1) we
follow [12] by employing the following homogeneous boungeonditions

u=(Ou)-n=0, 9Q™\0Q, (10)
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wheren is the outward normal cﬂQgH. For the second equation in (1), the bound-
ary conditions are simply
v=0, 2Q\0Q. (11)

We remark that the above boundary conditions for the subdoprablems are es-
sential for the success of the NKS solver. Other boundarditions are also tested
but only lead to poor convergence of GMRES. To solve the saadloproblems, we
use either a sparse LU factorization or a sparse incomplgt@lLU) factorization.
In doing the factorization, we use a point-block orderingtfee subdomain matrix
and keep the coupling between the two components at eachagakstithin each
time step, the factorization is only done once at the first tdaviteration and is
reused thereafter.

4 Numerical experiments

We carry out numerical experiments on a Dell supercompuoigatéd at the Uni-
versity of Colorado Boulder. The computer consists of 136&gute nodes, with
two hex-core 2.8Ghz Intel Westmere processors and 24GB toemory in each
node. Our algorithm is implemented based on the Portablensible Toolkits for
Scientific computations (PETSc, [1]) library. In the nuncatiexperiments we use
all 12 cores in each node and assign one subdomain per poocess. The relative
stopping conditions for the Newton and GMRES iteration aspectively 1< 106
and 1x 107°.

4.1 Steady-state solution

The test case we study here is taken from [11]. The initiatldé@n for the testis a
randomly distributed stat@) V%) = (0.05+ &, ), where max||&ul|w, || &v|w) <
0.05. The parameters are setas= 4,3 =2, y=0.005,6 = 0.1, p = 0.001.

We run the test case on a 25856 mesh with an initial time step siz&® =
0.001. The time step size is then adaptively controlled bygi§k). Thanks to the
fully implicit method and the adaptive time stepping stggteve are able to obtain
the steady-state solution at abdut 100, as seen in Figure 1 and 2. From the
figures we observe that wher: 1.4 both the spinodal decomposition and the order-
disorder type instability occur but after that the ordergpageter quickly tends to
zero as the conserved concentration field coarsens to #izgdstate. Provided in
Figure 3 is the evolution history of the time step size anddke free energy. It can
be seen that by using the adaptive strategy, the time stedessfully adjusted by
several orders of magnitude. The total free energy decay$ially approaches to
its minimizer when the solution arrives at the steady-state
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Fig. 2 Contour plots of the non-conserved order parameter
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Fig. 3 Evolution history of the time step size (left panel) and the tive® energy (right panel).

We remark that because of the severe stability restrictiothe time step size, it
is often difficult to obtain the steady-state solution whareaplicit method is used.
In [11], although similar tests are conducted, no steadtestolutions are obtained
due to the explicit time stepping.

4.2 Parametersin the NKS solver

To understand how the parameters in the Schwarz preconelitadfect the perfor-
mance, in the following experiments we run the test case oh52:% 1152 mesh
with 144 processor cores by using a fixed the time stepAtze 1.0 x 10> for
only the first 20 steps.

We first examine the effects of different subdomain solvétse overlap size
is fixed atd = 2. In Table 1 we show the total numbers of Newton and GMRES
iterations as well as the total compute time. Results fohhdf and ILU with
different fill-in levels are provided. From the table we finagrisingly that GMRES

Table 1 Effects of different subdomain solvers. Here “n/c” means no cayarece.

ILU(2) ILU(4) ILU(8) LU LU-blk LU-blk-reuse
#Newton n/c n/c n/c 41 41 41
#GMRES n/c n/c n/c 1225 1225 1243
Time (s) n/c n/c n/c 138.6 89.2 65.6

doesn’t converge when ILU is the subdomain solver, even laittpe fill-in levels.

When a sparse LU factorization is used as subdomain soltkguaih the point-
block version doesn’t change the number of iterations, trepute time is saved
by around 35% compared to the non-block version. To reduweedmpute time, we
perform the subdomain LU factorization only once per tinepsand reuse it for all
the Newton iterations within the same time step. By reudieg U factorization the
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total compute time is cut by around 26% despite of the sligtrtdase of the number
of GMRES iterations. Based on the above observations, Féhalfollowing tests,
we use the point-block version of sparse LU factorizatiothi@use the factorization
within each time step.

We next investigate the performance of the NKS solver wiffedgnt overlap
0. Table 2 shows the total numbers of Newton and GMRES iteratas well as
the total compute time fod = 0,1, ..., 6. It is observed from the table that: (1) the

Table 2 Results on using different overlaps.

5 0 1 2 3 4 5 6
#Newton 41 41 41 41 41 41 41
#GMRES 21274 2482 1243 840 642 513 440
Time(s)  205.6 95.3 65.6 55.7 45.7 50.8 52.0

number of Newton iterations does not changé aaries; (2) the number of GMRES
iterations reduces whahbecomes larger; and (3) the total compute time is optimal
for & = 4 in the test. Therefore we uge= 4 in our scalability tests.

4.3 Parallel scalability

In the parallel scalability tests, we fix the overlap size ¢db= 4 and choose the
point-block version of the sparse LU factorization (reust each time step) as the
subdomain solver. We run the tests on a 1&82152 mesh for 20 time steps with
At = 1.0 x 10~° and gradually double the number of processor cores. As shown
in Figure 4, when the number of processor cores is incredsetbtal number of
Newton iterations stays unchanged while the total numbeBMRES iterations
increases slightly. Further from Figure 5 we observe thatohal compute time is
reduced almost linearly as more processor cores are usetalfof 1235 speedup

is achieved when the number of processor cores increased #4 to 2304, leading

to a parallel efficiency of 78%.
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