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1 Introduction

The cardiac Bidomain model consists in a reaction-diffusion system of PDEs for
the intra- and extra-cellular cardiac potentials coupled with a nonlinear system of
ODEs accounting for the cellular model of ionic currents. Fully implicit methods
in time have been considered in a few studies, see e.g. [16] and references therein.
As in most of previous work (see [18] for a review), in this study we consider an
Implicit-Explicit operator splitting technique in order to separate the part of the
system of PDEs describing diffusion of cardiac potentials from the large and stiff
nonlinear system of ODEs accounting for the reaction terms. The resulting space-
time discretization of the so-called parabolic-parabolic Bidomain operator leads to a
large, sparse, symmetric positive semidefinite linear system which must be solved at
each time step of a cardiac beat simulation using a Krylov subspace method. Given
a component by component finite element discretization of the cardiac potentials,
the coefficient matrix of the linear system to be solved is

K̂ =

[
Ai 0
0 Ae

]
+

χ

δt

[
M −M
−M M

]
(1)

where δt is the value of the time step and χ the membrane capacitance per unit
volume; M and Ai,e are the mass and stiffness matrices with entries

{M}rs =
∫

Ω

φ
r
hφ

s
h, {Ai,e}rs =

∫
Ω

Di,e∇φ
r
h ·∇φ

s
h,

where for sake of simplicity the same finite element basis {φ j
h} is considered for

each cardiac potential. Anisotropic conductivity tensors Di(x) and De(x) model
propagation of electrical signals with orthotropic anisotropy

Di,e(x) =
3

∑
j=1

σ
i,e
j (x)a j(x)a j(x)T ,

with σ
i,e
j (x) > 0 the conductivity coefficient of the intra- and extra-cellular media

measured along the orthonormal triplet {a j(x)}3
j=1 describing cardiac fiber rota-

tion [9]. For additional details on the operator splitting technique adopted and the
diffusion tensors, see [6].
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Many different preconditioners have been already proposed for the efficient it-
erative solution of the Bidomain model in its parabolic-parabolic formulation (1).
Among them, we mention block Jacobi preconditioners [6], algebraic multigrid [13,
14], multilevel Schwarz preconditioners [11, 15, 12] and balancing Neumann-
Neumann methods [19]. An exact BDDC algorithm and a FETI-DP method have
been constructed, analyzed and experimentally validated by the Author in [20].

2 Inexact BDDC preconditioner

Following the framework of substructuring algorithms [17], the cardiac domain Ω

is decomposed into N non-overlapping open Lipschitz subdomains Ω j of diameter
H j, forming a coarse conforming finite element partition of Ω and naturally defining
the interface, i.e.

Ω =
N⋃

i= j

Ω j, Γ =
⋃
j 6=k

∂Ω j ∩∂Ωk, Γj = ∂Ω j ∩Γ .

A triangulation is introduced in each subdomain with matching finite element nodes
on the boundaries of adjacent subdomains across the interface. As usual in non-
overlapping literature, the finite elements space defined on Ω j will be denoted by
W( j) and it is further split into its interior (labeled by I) and interface (Γ ) parts; the
following spaces should then be introduced

W( j) = W( j)
I

⊕
W( j)

Γ
, W =

N

∏
j=1

W( j), WI =
N

∏
j=1

W( j)
I ,

together with the subspace Ŵ ⊂ W of continuous functions. Within the non-
overlapping framework, a global matrix is never assembled explicitly; instead a
Bidomain linear matrix K( j) is assembled on each subdomain and reordered as[

K( j)
II K( j)

IΓ

K( j)T

IΓ K( j)
Γ Γ

]
.

The unassembled global matrix defined on W can thus be defined as K = diag(K( j));
similarly, KII = diag(K( j)

II ).
The exact BDDC preconditioner for matrix K̂ can be formulated as (see [8, 10])

M−1
BDDC = M−1

I +(I−M−1
I K̂)M−1

Γ
(I− K̂M−1

I ),

where
M−1

I = RT
I K−1

II RI , M−1
Γ

= RT
D (Pcoarse +Plocal)RD,
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with RI the restriction operator from Ŵ to W and RD the scaled restriction operator
from Ŵ to W built using a suitable partition of unity [20]. The coarse term of the
preconditioner can be defined by

Pcoarse =ΨK−1
c Ψ

T , Kc =Ψ
T KΨ ,

with the coarse primal basis function matrix given by the solution of the following
minimization problem posed on W

Ψ = argmin wT Kw, s.t. Cw = I,

where I is the identity matrix and C is the block diagonal matrix of BDDC con-
straints which ensures the continuity of coarse basis functions at primal degrees of
freedom. The action of the local term of the preconditioner is given by[

K CT

C 0

][
Plocal g

µ

]
=

[
g
0

]
.

The application of the BDDC preconditioner requires the solution of the block di-
agonal Dirichlet and Neumann problems given by the matrices KII and Krr respec-
tively, where Krr is obtained from K by removing the matrix entries related to the
subdomain vertices belonging to the coarse primal space [8].

It is well known that the local problems defined by the BDDC preconditioner can
be bottlenecks in three dimensions, since direct factorizations require too much time
and memory if the number of degrees of freedom in any subdomain is large; also,
backward and forward substitution algorithms do not map well on modern architec-
tures and accelerators. A possible solution consists in using multigrid precondition-
ers as black-box inexact solvers for the local Dirichlet and Neumann problems as
proposed by Dohrmann [8]; the approach preserves scalability and quasi-optimality
of the exact BDDC method provided a sufficient quality of the inexact solvers.

An approximate BDDC preconditioner can be constructed as follows: let K̂[ be
the matrix which is equal to K̂ except for the coupling of the interior degrees of
freedom and let K] be the matrix equal to K except for the blocks related to the
Neumann problem of the BDDC preconditioner, i.e.

K̂[ =

[
K[

II KIΓ
KT

IΓ KΓ Γ

]
, K] =

[
K]

rr Krv
KT

rv Kvv

]
.

In practice, matrices K[
II and K]

rr are not explicitly known, since they represent an
approximation of the exact matrices through the multigrid process.

Inexact solvers can be obtained in such a way that K[ and K] will be spectrally
equivalent to the exact matrices

γ1gT K̂g≤ gT K̂[g≤ γ2gT K̂g ∀g ∈ Ŵ, (2)
α1gT Kg≤ gT K]g≤ α2gT Kg ∀g ∈W. (3)
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where 0< γ1≤ γ2 and 0<α1≤α2 are constants independent on h and H =max j H j.
A priori estimates for the latter constants are not required for the implementation,
but they can be estimated by conjugate gradient iterations. In addition, if the matrix
K̂ is singular as for the Bidomain model, matrices K[ and K] should satisfy the so
called null space property

ker(K̂[) = ker(K̂), ker(K]) = ker(K).

Given a candidate preconditioner P−1
II for K[−1

II , the following correction was pro-
posed in [8] to satisfy the null space property

K[−1

II = NI(NT
I KIINI)

−1NT
I +ET

I P−1
II EI , (4)

where
EI = I−KIINI(NT

I KIINI)
−1NT

I ,

with I the identity matrix and NI the restriction of ker(K̂) to the interior degrees of
freedom. The same argument holds true for the Neumann problem, thus

K]−1

rr = Nr(NT
r KrrNr)

−1NT
r +ET

r P−1
rr Er, (5)

where
Er = I−KrrNr(NT

r KrrNr)
−1NT

r ,

with P−1
rr a candidate preconditioner for K]−1

rr .
The action of the approximate BDDC preconditioner can then be defined as

M̃−1
BDDC = M[−1

I +(I−M[−1

I K̂[)M]−1

Γ
(I− K̂[M[−1

I ),

where the superscript [ (respectively ]) denote quantities obtained by replacing the
matrix K̂ (resp. K) by K[ (resp. K]) in the construction of the BDDC operator. In
other words,

M[−1

I = RT
I K[−1

II RI , M]−1

Γ
= RT

D

[
P]

coarse +P]
local

]
RD,

with
P]

coarse =Ψ
]K]−1

c Ψ
]T
, K]

c =Ψ
]T

K]
Ψ

],

and the block saddle point matrix is modified as[
K] CT

C 0

]
.

For further details on the inexact approach considered, see [8].

The following theorem holds (see [8] for the proof).
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Theorem 1. The condition number of the approximate BDDC preconditioner can
be bounded from above by the condition number of the exact BDDC preconditioner
as

κ2(M̃−1
BDDCK̂)≤C

α2γ3
2

α1γ3
1

κ2(M−1
BDDCK̂),

where γ1 and γ2 are given by (2), α1 and α2 by (3) and C is a constant independent
of the parameters of the spatial discretization h and H and the number of subdo-
mains N. Moreover, if the coarse problem A]

c is solved inexactly by the action of a
preconditioner A]]−1

c satisfying

β1gT A]−1

c g≤ gT A]]−1

c g≤ β2gT A]−1

c g,

with 0 < β1 ≤ β2, it will hold

κ2(M̃−1
BDDCK̂)≤C

max{1,β2}α2γ3
2

min{1,β1}α1γ3
1

κ2(M−1
BDDCK̂).

A quasi-optimal bound for the condition number of the exact BDDC method for
the Bidomain model in the parabolic-parabolic form has been proved in [20].

Theorem 2. Let the BDDC coarse primal space be spanned by the vertex nodal fi-
nite element functions and the edge cut-off functions. Then, for the three-dimensional
Bidomain model, it will hold

κ2(M−1
BDDCK̂)≤C(1+ log(H/h))2,

with H = max j H j and C a constant independent of h, H, N and possible jumps in
conductivity coefficients σ

(i,e)
k of the Bidomain operator aligned with Γ .

3 Numerical resuts

In this Section parallel numerical experiments are presented for a parallellepipedal
domain Ω subdivided into N = Nx×Ny×Nz subdomains. Each Ω j is discretized by
low-order Q1 finite elements, i.e. conforming hexaedral shape-regular isoparametric
tri-linear finite elements of characteristic diameter h. The linear system (1) is solved
by the preconditioned conjugate gradient (PCG) algorithm with a zero initial guess
and stopping criterion ‖rk‖2/‖r0‖2 ≤ 10−6, where rk is the preconditioned residual
at the kth iterate. The right-hand side is always random and uniformly distributed.
Extreme eigenvalues of the preconditioned operators, denoted by λm and λM in the
following, are estimated using the well-known recursive formula for Lanczos itera-
tions; the experimental condition number is computed as κ2 = λM/λm.

The parallel code used to obtain the numerical results has been developed in
Fortran and C; the Message Passing Interface (MPI) library has been used for paral-
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lelization, assigning one subdomain to one MPI process. The BDDC preconditioner
has been developed using the Portable Extensible Toolkit for Scientific Computa-
tion [5] (PETSc) and it is available for download within the development version of
the library (see https://bitbucket.org/petsc/petsc). Whenever the BDDC algorithm
is exactly applied, local problems are solved using the Unsymmetric Multifrontal
sparse LU factorization package [7] (UMFPACK), while the algebraic multigrid
(AMG) method boomerAMG provided by the HYPRE library [3] is used as a black-
box solver within the inexact BDDC algorithm. The interested reader is referred
to [13, 14] where the AMG method has been successfully applied to the serial
and parallel solution of the Bidomain linear system. The BDDC coarse problem
is solved in parallel either with the MUltifrontal Massively Parallel sparse direct
Solver [4] (MUMPS) or inexaclty with the parallel boomerAMG method. For all
test cases considered, the coarse space is spanned by subdomain vertices and edge
averages for both cardiac potentials; unless otherwise stated, the conductivity co-
efficients used are reported in [6]. One V1,1-cycle with Gauss-Seidel smoothing is
always used for the AMG method in order to preserve symmetry of the resulting
operator.

Table 1 contains results of a quasi-optimality test obtained on the x86 64 Linux
cluster Matrix of CASPUR [1], where each core is equipped with 2GB memory. In
this test case, Ω is divided in 3x3x3 subdomains, h=1E-2, δt=1E-2 and increasing
values of H are considered; thus, the volume of Ω increases as H/h increases. In-
exact solvers are used for both sets of local problems whereas the coarse problem is
solved exactly with a parallel factorization. AMG based local solvers does not make
the performances of the BDDC deteriorate with respect to H/h and they allow us
to manage larger local problems, since the memory requirements for a multigrid
preconditioner are linear in the local size. Quasi-optimality is thus preserved by the
inexact BDDC algorithm for the Bidomain model.

Table 1 Comparison between exact and inexact BDDC method for different values of H/h. For
each run, extreme eigenvalues, condition number and number of iterations are shown. Test case
with h=1E-2 and 3x3x3 subdomains.

M−1
BDDCK̂ M̃−1

BDDCK̂
H
h λm λM κ2 it λm λM κ2 it

5 1.00 1.45 1.45 6 0.88 1.42 1.61 7
10 1.00 2.28 1.28 9 0.88 2.14 2.45 10
15 1.00 2.98 2.98 11 0.87 2.66 3.06 11
20 1.00 3.49 3.49 13 0.87 3.17 3.71 13
25 1.00 4.02 4.02 13 0.85 3.56 4.18 14
30 out of memory 0.76 3.91 5.14 15
35 out of memory 0.75 4.23 5.60 16
40 out of memory 0.70 4.43 6.27 16

Table 2 contains experimental results of a weak scalability test for the inexact
BDDC algorithm on the BlueGene/Q FERMI of CINECA [2]; total number of de-
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grees of freedom (dofs), condition number, number of PCG iterations and solving
time per iteration (time/it) in seconds are reported. In the test case, h=1E-2, H/h=30,
δt=1E-2 and the number of subdomains N grows in each dimension as reported in
the first two columns. Thus, the volume of Ω increases as N increases. Inexact
solvers for both local problems and, in parallel, for the coarse problem are used.
Results are scalable in the number of iterations and solving time per iteration up to
4K cores and 200 millions degrees of freedom.

Table 2 Weak scalability test for the inexact BDDC method. For each run, number of subdomains
and domain decomposition, number of degrees of freedom (dofs), condition number, number of
PCG iterations (it) and solving time per iteration are shown. Test case with h=1E-2 and H/h=30.

N subd dofs κ2(M̃−1
BDDCK̂) it time/it (s)

8 2x2x2 410.758 5.79 13 0.96
64 4x4x4 3.203.226 5.79 13 0.94
512 8x8x8 25.298.674 9.81 15 1.01
4096 16x16x16 201.089.250 11.12 16 1.12

Finally, we report on a test case with coefficients with jumps aligned with Γ ,
obtained on the x86 64 Linux cluster Matrix of CASPUR [1]. As test case, we con-
sider a 3x3x3 decomposition of Ω , h=1E-2, H/h=15 and δt=1E-2; inexact solvers
are used for both local problems, instead the coarse problem is solved exactly with a
parallel factorization. Two different checkerboard patterns of discontinuities in the
conductivity coefficients are considered; conductivity coefficients are initially set to
σ

i,e
1 =10, σ

i,e
2 =1 and σ

i,e
3 =0.1, then the following cases are built given a factor

p > 0:

A Each conductivity coefficient, either intra- or extra-cellular, is multiplied by p
in the black subdomains and by 1/p in the white subdomains.

B Intra-cellular coefficients are multiplied by p in the black subdomains and by
1/p in white subdomains; conversely, extra-cellular coefficients are multiplied
by 1/p in the black subdomains and by p in white subdomains.

Numerical results are summarized in Table 3, with columns labeled according to the
previous classification. The condition number and the number of iterations (listed
in round brackets) of the inexact BDDC algorithm remain almost constant when
we vary the factor p largely in both test cases considered; the ratio between inexact
and exact condition number is also shown to highlight the quality of the inexact
approach.

References

1. CASPUR HPC home page. http://hpc.caspur.it



8 Stefano Zampini

Table 3 Condition number dependence of inexact BDDC method with coefficient jumps. For each
run, condition number and number of iterations in round brackets are shown together with the ratio
between condition numbers of the exact and inexact BDDC. Test case with h=1E-2, H/h=15 and
3x3x3 subdomains.

A B

p κ2(M̃−1
BDDCK̂) ratio κ2(M̃−1

BDDCK̂) ratio

1 10.47 (20) 1.47 10.47 (20) 1.47
1E1 12.41 (22) 1.46 12.12 (21) 1.49
1E2 12.54 (22) 1.46 13.70 (24) 1.60
1E3 13.75 (23) 1.57 15.13 (24) 1.78

2. CINECA HPC home page. http://hpc.cineca.it
3. HYPRE. High performance preconditioners. http://www.llnl.gov/CASC/linear solvers/
4. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.Y.: A fully asynchronous multifrontal

solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 15–41 (2001)
5. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., Curf-

man McInnes, L., Smith, B.F., H., Z.: PETSc Web page (2012). Http://www.mcs.anl.gov/petsc
6. Colli Franzone, P., Pavarino, L.F.: A parallel solver for reaction diffusion systems in compu-

tational electrocardiology. Math. Mod. Meth. Appl. Sci. 14, 883–911 (2004)
7. Davis, T.A.: Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM

Trans. Math. Soft. 30, 196–199 (2004)
8. Dohrmann, C.R.: An approximate BDDC preconditioner. Numer. Lin. Alg. Appl. 14, 149–168

(2007)
9. LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure

of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog.
Am. J. Physiol. Heart Circ. Physiol. 269, H571–H582 (1995)

10. Li, J., Widlund, O.B.: FETI-DP, BDDC, and block Cholesky methods. Int. J. Numer. Meth.
Engrg. 66, 250–271 (2006)

11. Pavarino, L.F., Scacchi, S.: Multilevel additive Schwarz preconditioners for the Bidomain
reaction-diffusion system. SIAM J. Sci. Comput. 31, 420–443 (2008)

12. Pavarino, L.F., Scacchi, S.: Parallel multilevel Schwarz and block preconditioners for the
Bidomain parabolic-parabolic and parabolic-elliptic formulations. SIAM J. Sci. Comput. 33,
1897–1919 (2011)

13. Pennacchio, M., Simoncini, V.: Algebraic multigrid preconditioners for the Bidomain
reaction-diffusion system. Appl. Numer. Math. 59, 3033–3050 (2009)

14. Plank, G., Liebmann, M., Weber dos Santos, R., Vigmond, E., Haase, G.: Algebraic Multigrid
Preconditioner for the cardiac Bidomain model. IEEE Trans. Biomed. Engrg. 54, 585–596
(2007)

15. Scacchi, S.: A hybrid multilevel Schwarz method for the Bidomain model. Comp. Meth. Appl.
Mech. Engrg. 197, 4051–4061 (2008)

16. Scacchi, S.: A multilevel hybrid Newton-Krylov-Schwarz method for the Bidomain model of
electrocardiology. Comp. Meth. Appl. Mech. Engrg. 200, 717–725 (2011)

17. Toselli, A., Widlund, O.B.: Domain decomposition methods - Algorithms and theory. Springer
(2005)

18. Vigmond, E., Weber dos Santos, R., Prassl, A.J., Deo, M., Plank, G.: Solvers for the cardiac
Bidomain equations. Progr. Biophys. Mol. Biol. 96, 3–18 (2008)

19. Zampini, S.: Balancing Neumann-Neumann methods for the cardiac Bidomain model. Numer.
Math. 123, 341–373 (2013)

20. Zampini, S.: Dual-Primal methods for the cardiac Bidomain model. Math. Models Methods
Appl. Sci. (2013). DOI 10.1142/S0218202513500632


