
Optimized interface preconditioners for the
FETI method

Martin J. Gander and Hui Zhang

1 Motivation

In the past two decades, the FETI method introduced in [10] and its variants have
become a class of popular methods for the parallel solution of large-scale finite el-
ement problems, see e.g. [11], [9], [14], [15], [8]. A key ingredient in this class
of methods is a good preconditioner for the dual Schur complement system whose
operator is a weighted sum of subdomain Neumann to Dirichlet (NtD) maps. One
choice is the so-called Dirichlet preconditioner, which is the primal Schur comple-
ment, i.e. a weighted sum of subdomain Dirichlet to Neumann (DtN) maps. The
Dirichlet preconditioner is quasi-optimal in the sense that together with an appro-
priate coarse space, it leads to a polylogarithmic condition number in H/h, see e.g.
[14]. However, in terms of total CPU time, often a cheaper alternative called the
lumped preconditioner performs better [11, 8].

We show here that the lumped preconditioner can be further improved by intro-
ducing parameters into the tangential interface operator and optimizing them to get
condition numbers as small as possible while keeping the cost of the preconditioner
low. Since these preconditioners, like the lumped preconditioner, only involve com-
putations along the interface, and no computations in the interior of subdomains, we
call them interface preconditioners.

We consider the model problem{
−uxx−uyy = f , (x,y) ∈ R2

lim(x,y)→∞ u = 0,

which can be decomposed into two non-overlapping subproblems as follows:
−(u1)xx− (u1)yy = f , (x,y) ∈ (−∞,0)×R,

(u1)x = λ , (x,y) ∈ {0}×R,
lim(x,y)→∞ u1 = 0,

(1)


−(u2)xx− (u2)yy = f , (x,y) ∈ (0,∞)×R,

(u2)x = λ , (x,y) ∈ {0}×R,
lim(x,y)→∞ u2 = 0,

(2)

1
2

u1−
1
2

u2 = 0, (x,y) ∈ {0}×R. (3)

University of Geneva, 2-4 rue du Liévre, Case postale 64,
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The FETI method takes the common Neumann trace λ as unknown and the equation
to be solved for λ is defined by (3). To analyze the operator of the equation for λ ,
we let f = 0 and do a Fourier transform in y ∈ R for (1), (2) and (3) to obtain

−(û1)xx− k2û1 = 0, x ∈ (−∞,0),
(û1)x = λ̂ , x = 0,

limx→−∞ û1(x,k) = 0,
(4)


−(û2)xx− k2û2 = 0, x ∈ (0,∞),

(û2)x = λ̂ , x = 0,
limx→∞ û2(x,k) = 0,

(5)

and
1
2

û1−
1
2

û2 = 0, x = 0. (6)

The subdomain solutions ûi, i = 1,2 can be obtained from (4) and (5), and substitut-
ing them into the left hand side of (6) yields the equation for λ̂ ,

F̂ λ̂ :=
1√
k2

λ̂ ,

where F̂ is the symbol of the averaged NtD operator F . Similarly, one can obtain the
symbol of the Dirichlet preconditioner (i.e. the averaged DtN operator): it is exactly
F̂−1, which means that the Dirichlet preconditioner is an exact preconditioner for
our symmetric partition into two subdomains. However, using the Dirichlet precon-
ditioner requires to solve the Dirichlet boundary value problems on the subdomains,
which are in addition to the Neumann boundary value problems involved in F .

As a cheaper alternative, Farhat and Roux introduced the lumped preconditioner
for F , see e.g. [11], which corresponds to the submatrix of the assembled matrix
for the original problem restricted to the interface. Here we explain it as an operator
at the continuous level, that is P−1

L := −∂yy + p acting on the interface, where p =
O(h−2). To see this, let us consider a 5-point stencil discretization of the minus
Laplacian (see the left part of the following illustration)

1
h2

 −1
−1 4 −1
−1

 , 1
h2

−1
4
−1

 .
Assuming the interface is along the vertical direction, the lumped preconditioner
corresponds to a 3-point stencil along interface, shown on the right part of the above
illustration. So the symbol of the preconditioned operator will be

P̂−1
L F̂ :=

k2 + p√
k2

.

Note that practically |k| varies in [kmin,kmax] := [ π

H , π

h ], where H is the domain size
and h is the mesh size, both along the y direction, and that usually we have

√
p ∈
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[kmin,kmax]. In this case, the spectra of P̂−1
L F̂ are bounded by

σ(P̂−1
L F̂)⊂ [2

√
p,max{kmin +

p
kmin

,kmax +
p

kmax
}].

If we fix H and let h→ 0, we will find that the condition number of P−1
L F is O(h−1).

So the drawback of the lumped preconditioner is that the condition number deteri-
orates at the same rate as the unpreconditioned method as the mesh size tends to
zero. This is conforming to the result in [9] where it was also pointed out that the
lumped preconditioner has a favorable spectral distribution for the Conjugate Gra-
dient method. However, in our special cases of numerical experiments, we have
not found this superiority, see Sec. 3 (in which we did use the original form of the
lumped preconditioner).

Since the symbol of F is F̂ = 1√
k2 , it is clear that an exact preconditioner for F

is the square-root of the Laplacian operator on the interface. We already know that
the Dirichlet preconditioner implements the square-root through subdomain solves.
There are also other ways to approximate the square-root or its inverse, the latter
is useful for the primal Schur complement methods. Some are based on the idea of
FFT and its extensions, see e.g. [7, 4, 13]. Two multilevel methods are proposed
in [5]. In [16], the Green’s function is used for approximating the inverse square-
root in general geometry. In the more recent approach [3, 2], a Krylov subspace
method is adopted for the approximate application of the inverse square-root. In the
context of integral equation methods for scattering problems, Padé approximation
is adopted for preconditioning, see e.g. [6]. Our work is more related to that of [1]1,
in which the ideas of using quadratic approximations and minimizing the condition
number were first presented. The first difference of our work from that of [1] lies in
the problems studied: the positive definite Helmholtz equation is considered in [1]
while we study the Poisson equation here. The second difference is that we propose
two new approaches, in addition to the quadratic approximation.

2 Optimized Interface Preconditioners

In this section we will introduce some approximations of the square-root of the inter-
face Laplacian, which define our new preconditioners. Parameters involved in these
approximations will be optimized so that condition numbers of the corresponding
preconditioned operators are as small as possible.

We first consider the preconditioner whose symbol is of the form P̂−1 := k2 +
p, the same as that of the lumped preconditioner. We now optimize however the
parameter p≥ 0 by solving the minimization problem

min
p≥0

cond(P−1F) = min
p≥0

maxk∈[kmin,kmax](k
2 + p)/

√
k2

mink∈[kmin,kmax](k
2 + p)/

√
k2

. (7)

1 We only discovered this reference when we already finished our present investigation.
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Theorem 1. The solution of problem (7) is given by p∗ = kminkmax. In particular, if
kmin = O(1) and kmax = O(h−1), we have cond(P−1F) = O(h−1/2) when p = p∗.

Remark 1. It is also possible to include the first-order derivative into the precondi-
tioner. But in that case, symmetry is destroyed, and minimizing the condition num-
ber is then not necessarily the relevant goal.

In the second approach, the symbol of the preconditioner is chosen to be of the
form

P̂−1 =
p0 + p2k2 + k4

q+ k2 , (8)

and we optimize p0, p2,q by solving the minimization problem

min
p0,p2,q≥0

cond(P−1F) = min
p0,p2,q≥0

maxk∈[kmin,kmax] ρ(k)
mink∈[kmin,kmax] ρ(k)

,

where ρ(k) is the symbol of the preconditioned operator, i.e.

ρ(k) :=
p0 + p2k2 + k4

(q+ k2)
√

k2
.

Theorem 2. Assume kmax = Ch−1 and let p0 = p2 = k4/3
max

(
2kmin +

2
kmin

)2/3
, q =(

kmin +
1

kmin

)4/3
(kmax/2)2/3. Then we have cond(P−1F) = O(h−1/3).

Remark 2. We found numerically that the smaller kmin is, the smaller h needs to be
before the asymptotics set in. We also observed that there exist better choices of
parameters in the pre-asymptotic regime, but a formula still needs to be found.

Remark 3. There are many possible ways to implement (8) in the physical domain.
We found that a good way in practice is formally given by

P−1 = (−∂yy + r0)(−∂yy +q)−1(−∂yy + r2),

where r0,r2 are related to p0, p2 of (8) such that k4+ p2k2+ p0 = (k2+r0)(k2+r2).

Now we propose a third approach for approximating the square root. Suppose we
have a good preconditioner Ã (e.g. Jacobi) for an operator A such that

(i) ‖S‖< 1 where S := I− Ã−1A is the iteration operator,
(ii) Ã1/2 is cheap to apply,

(iii) A commutes with Ã (this can be omitted in practice).

Then, using Newton’s binomial series, we have

A1/2 = Ã1/2 (I−S)1/2 = Ã1/2
∞

∑
i=0

( 1
2
i

)
(−S)i.
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Fig. 1 Values of the symbol (10) with pi the binomial coefficient in (9).

A preconditioner for A−1/2 can be obtained by truncating the infinite series,

P−1 = Ã1/2
n

∑
i=0

( 1
2
i

)
(−S)i, (9)

so n iterations of S are needed in one application of P−1. We can also consider the
more general polynomial

P−1 = Ã1/2
n

∑
i=0

pi (−S)i.

The right preconditioned operator is then

A−1/2P−1 = T
n

∑
i=0

pi (−S)i, T := A−1/2Ã1/2.

Assume the symbol of S to be s ∈ [smin,smax] ⊂ (−1,1) and the symbol of T to
be T̂ = 1√

1−s
, which can be obtained for example by Fourier analysis. Hence, the

symbol of the preconditioned operator is

ρ(s) := Â−1/2P̂−1 =
1√

1− s

n

∑
i=0

pi (−s)i. (10)

In the case of truncation of the binomial series and n = 1, . . . ,4, the symbols are
plotted in Fig.1. This clearly shows that the symbol value tends to infinity as s goes
to one. In fact, we have ρ = O(t−1/2) for t := 1− s→ 0.

For example, when S is Jacobi for the 1d discrete Laplacian, we have s ∈
{cos( jπ

N ), j = 1, . . . ,N−1}, where the mesh size is h= 1/N and we assumed Dirich-
let conditions on the boundary. In this case, we have max[−1,smax] ρ(s) = O(h−1) no
matter how many orders are kept in the truncation! To make things worse, the dis-
crete points in s are more clustered near s =±1 than elsewhere.
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Remark 4. Since the direct truncation of the binomial series is really good away
from low frequencies (small j), it is natural to approximate the low frequency part
by a coarse grid or multigrid. We will however not investigate this further here.

The idea to improve is optimizing the parameters {pi} such that the correspond-
ing condition number is minimized. We begin with the approximation of order n= 1.

Theorem 3. Let s ∈ [−1,smax] with 0 < smax < 1, n = 1 and assume p1 = 1 is used
for the preconditioned operator (10). If the operator is positive definite, then the
condition number of the preconditioned operator is minimized if and only if

p0 =
2smax +

√
2−2smax

2−
√

2−2smax
,

in which case cond(P−1A−1/2) = O(t−1/4) as t := 1− smax→ 0.

We also tried the approximation of order n = 2. The scaling of the condition number
when s goes to one is not improved for the exponent but is improved for the constant.
We do however not have closed formulas for the optimized parameters when n≥ 2.

3 Numerical experiments

All the numerical experiments are coded in FreeFem++ [12] with P1 elements. We
solve homogeneous equations on Ω = (0,1)2 with the zero solution. We take a ran-
dom initial guess for the CG iterations which stop when the relative preconditioned
residual norms are less than 10−15. It is worthwhile to note that the proposed precon-
ditioners involve only integer-order differential operators easily implementable as
matrices from standard discretization (FFT is unnecessary). So in methodology, they
are applicable to general geometry though the optimal parameters could change.

First, we solve the Laplace equation in two equal subdomains. The maximum
errors of the iterates to the exact zero solution are illustrated in Fig. 2 against the
iteration numbers, from which we can see that with the optimized interface precon-
ditioners the iterations converge faster than without or with the lumped precondi-
tioner, and the optimized rational preconditioners eventually outperform the others
in terms of iteration numbers as the mesh size h becomes small.

Next, we consider a diffusion problem with smoothly varying coefficient,

−∇ · (a(x,y)∇u) = 0, (x,y) ∈ (0,1)2,
u = 0, if xy(1− x)(1− y) = 0, (11)

where a= ν x2y2+0.1. The coefficient a is continuous but varies along the interface.
To study the effect of the variation, we take the constant ν to be 1, 10, 100, and 1000.
We use a fifth-order quadrature rule to ensure accurate numerical integration in the
discretization. The results using two subdomains are shown in Fig. 3, and clearly
show the robustness of the optimized interface preconditioners, except for the one
based on the Jacobi preconditioner.
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Fig. 2 Maximum errors between iterates and the FEM solutions for the Laplacian in the unit square
for h = 1/16,1/64,1/256,1/512.
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Fig. 3 Maximum errors between iterates and the FEM solutions for (11) with h = 1/32 for ν =
1,10,100,1000.
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Remark 5. For the quadratic and the quartic/quadratic approximation, we adapted
the interface Laplacian to ∂y(a(x,y)∂y) and at the same time multiplied the opti-
mized parameters with a(x,y). For the Jacobi induced preconditioner, we still use
the interface Laplacian operator, which is better than using the diffusion operator.
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