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Introdution



Domain deomposition methods
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Domain deomposition methods are used for the numerial solution of boundary

value problems for partial di�erential equations on parallel omputers.

Most fully in the theory of domain deomposition methods are presented for

stationary problems

1,2
.

Computational algorithms with overlap and without overlap of the subdomains

are used in synhronous (sequential) and asynhronous (parallel) algorithms.

1

A. Quarteroni and A. Valli, Domain deomposition methods for partial di�erential equations,

Numerial Mathematis and Sienti� Computation. Oxford: Clarendon Press. xv, 360 p., 1999.

2

A. Toselli and O. Widlund, Domain deomposition methods � algorithms and theory, Springer

Series in Computational Mathematis 34. Berlin: Springer. xv, 450 p., 2005.



Main approahes
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Domain deomposition methods for unsteady problems are based on two

approahes

3

.

1. For approximate solution of time-dependent problems we use ordinary

impliit approximation in time. Domain deomposition methods applied to

solving the disrete problem on the new time level. The number of iterations

in the optimal iterative methods for domain deomposition does not depend

on the disretization steps in time and spae.

2. It is notiterative domain deomposition algorithms are onstruted for

nonstationary problems. We onstrut a speial sheme of splitting into

subdomains (region-additive shemes).

3

A. Samarskii, P. Matus and P. Vabishhevih, Di�erene shemes with operator fators,

Kluwer Aademi Publishers, 2002.



Regionally additive sheme
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A domain deomposition sheme is de�ned by a deomposition of the

omputational domain and by de�ning the splitting of the operator. To onstrut

the deomposition operators when solving BVP for PDEs, it is onvenient to use

a partition of unity for the omputational domain.

In the overlapping DD methods, a funtion is assoiated with eah subdomain,

and this funtion takes value between zero and one.

In the extreme ase, the width of the overlap of the subdomains is equal to the

spae disretization step. In this ase the regionally-additive shemes an be

interpreted as non-overlapping domain deomposition shemes, where the

exhange is ahieved by setting proper boundary onditions for eah of the

subdomain.



The main issues
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Domain deomposition methods for unsteady problems:

• Deomposition of domain;

• Operators of deomposition;

• Splitting sheme;

• Study of onvergene;

• The omputational implementation.



Illustrative example

© Petr Vabishhevih and Petr Zakharov DD22, September 16-20, 2013, Lugano, Switzerland

The boundary value problem for one-dimensional paraboli equation:

∂u

∂t
−

∂2u

∂x2
= 0, 0 < x < l, 0 < t ≤ T.

u(0, t) = 0, u(l, t) = 0,

u(x, 0) = u0(x), 0 < x < l.

Domain deomposition:

Ω = Ω1 ∪ Ω2, Ω = {x | 0 < x < l}.



Deomposition with overlap of subdomains

© Petr Vabishhevih and Petr Zakharov DD22, September 16-20, 2013, Lugano, Switzerland

Ω1 Ω2

0 a b l

Ω1 = (0, b), Ω2 = (a, l).

The minimal overlay (h � disretization steps in spae):

b− a = h.



Deomposition with minimal overlap
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Stenil:

The transition to the new time level:

Ω1 Ω2

tn

tn+1



Sheme with overlap
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Let i = k è i = k + 1 � nodes on the boundary of the subdomains:

yn+1
i − yni

τ
−

yn+1
i+1 − 2yn+1

i + yn+1
i−1

h2
= 0, i < k, i > k + 1,

yn+1
k − ynk

τ
−

ynk+1 − 2yn+1
k + yn+1

k−1

h2
= 0,

yn+1
k+1 − ynk+1

τ
−

yn+1
k+2 − 2yn+1

k+1 + ynk
h2

= 0.

• Unonditional stability (+);

• Conditional onvergene (�): O(τh−1/2).



Standard approximation



Paraboli problem
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In a bounded domain Ω an unknown funtion u(x, t) satis�es the following

equation

∂u

∂t
−

m∑

α=1

∂

∂xα

(
k(x)

∂u

∂xα

)
= f(x, t), x ∈ Ω, 0 < t ≤ T,

in whih k(x) ≥ κ > 0, x ∈ Ω.

Homogeneous Dirihlet boundary onditions:

u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T.

The initial ondition:

u(x, 0) = u0(x), x ∈ Ω.



Notations
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Let (·, ·), ‖ · ‖ be the salar produt and the norm in L2(Ω):

(u, v) =

∫

Ω

u(x)v(x)dx, ‖u‖ = (u, u)1/2.

A symmetri positive de�nite bilinear form d(u, v) suh that

d(u, v) = d(v, u), d(u, u) ≥ δ‖u‖2, δ > 0,

is assoiated with the Hilbert spae Hd equipped with the following salar

produt and norm:

(u, v)d = d(u, v), ‖u‖d = (d(u, u))1/2.

Suppose t = tn = nτ, n = 0, 1, ..., where τ > 0 is a onstant time step.

A �nite-dimensional spae of �nite elements is denoted by Vh

, and un (un ∈ Vh)

stands for the approximate solution at the time level t = tn.



The variational problem

© Petr Vabishhevih and Petr Zakharov DD22, September 16-20, 2013, Lugano, Switzerland

(
du

dt
, v

)
+ a(u, v) = (f, v), ∀v ∈ H1

0 (Ω), 0 < t ≤ T,

(u(0), v) = (u0, v), ∀v ∈ H1
0 (Ω),

where

a(u, v) =

∫

Ω

k(x) gradu grad v dx.



Shemes with weights
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We study the projetion-di�erene sheme

(
yn+1 − yn

τ
, v

)
+ a(σyn+1 + (1− σ)yn, v) = (f(σtn+1 + (1− σ)tn), v),

∀v ∈ Vh, n = 1, 2, ...,

where σ is a number (weight). If σ = 0, then the sheme is an expliit

(forward-time) sheme, for σ = 1, we obtain a fully impliit (bakward-time)

sheme, and σ = 0.5 yields a symmetri (the so-alled Crank�Niolson) sheme.

The ondition

(v, v) +

(
σ −

1

2

)
τ a(v, v) ≥ 0, ∀v ∈ Vh

is neessary and su�ient for the stability of the sheme in the spae Ha.



Deomposition operators



Partition of unity of Ω
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Domain deomposition sheme we assoiate with the partition of unity of the

omputational domain Ω. Let the domain Ω onsists of p separate subdomains

Ω = Ω1 ∪ Ω2 ∪ ... ∪ Ωp.

Individual subdomains an overlap.

With a separate subdomain Ωα, α = 1, 2, ..., p we assoiate the funtion

ηα(x), α = 1, 2, ..., p suh that

ηα(x) =

{
> 0, x ∈ Ωα,
0, x /∈ Ωα,

α = 1, 2, ..., p,

where

p∑

α=1

ηα(x) = 1, x ∈ Ω.



Subdomain splitting
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In

(
du

dt
, v

)
+ a(u, v) = (f, v), ∀v ∈ H1

0 (Ω), 0 < t ≤ T

we have

a(u, v) =

p∑

α=1

aα(u, v), (f, v) =

p∑

α=1

(fα, v),

Here

(fα, v) =

∫

Ω

ηα(x)f(x, t)v dx

and (standard deomposition)

aα(u, v) =

∫

Ω

ηα(x)k(x) gradu grad v dx, α = 1, 2, ..., p.



Other variants
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aα(u, v) =

∫

Ω

k(x) gradu grad(ηα(x)v) dx,

aα(u, v) =

∫

Ω

k(x) grad(ηα(x)u) grad v dx, α = 1, 2, ..., p.



Operator form
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We have

B
dy

dt
+Ay = ϕ(t), 0 < t ≤ T,

y(0) = y0.

Here the mass matrix

B = B∗ > 0,

the sti�ness matrix

A = A∗ > 0.



Operator splitting
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We have

A =

p∑

α=1

Aα, ϕ =

p∑

α=1

ϕα

with (standard deomposition)

Aα = A∗
α ≥ 0, α = 1, 2, ..., p.

Symmetrized equation:

dw

dt
+ Ãw = ϕ̃(t), 0 < t ≤ T,

where

w = B1/2v, Ã = B−1/2AB−1/2, ϕ̃ = B−1/2ϕ,

Ã =

p∑

α=1

Ãα, Ãα = Ã∗
α = B−1/2AαB

−1/2, α = 1, 2, ..., p.



Splitting shemes



Two-omponent splitting (p = 2)
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• Douglas-Rahford sheme

• Peaeman�Rahford sheme

• Fatorized sheme

• Symmetrial sheme of omponentwise splitting



Douglas-Rahford sheme
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(
un+1/2 − un

τ
, v

)
+ a1(u

n+1/2, v) + a2(u
n, v) = (fn+1, v),

(
un+1 − un

τ
, v

)
+ a1(u

n+1/2, v) + a2(u
n+1, v) = (fn+1, v),

∀v ∈ Vh, n = 1, 2, ....

The problem in the subdomain (expliit-impliit sheme):

(un+1/2, v) + τa1(u
n+1/2, v) = (χn, v),

(un+1, v) + τa2(u
n+1, v) = (χn+1/2, v).



Shemes with weights
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(
un+1/2 − un

τ
, v

)
+ a1(σu

n+1/2 + (1− σ)un, v) + a2(u
n, v) = (fn+1/2, v),

(
un+1 − un

τ
, v

)
+a1(σu

n+1/2+(1−σ)un, v)+a2(σu
n+1+(1−σ)un, v) = (fn+1/2, v),

∀v ∈ Vh, n = 1, 2, ....

σ = 1/2 � Peaeman-Rahford sheme,

σ = 1 � Douglas-Rahford sheme.



Fatorized sheme
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The operator form:

(B + στA1)B
−1(B + στA2)

yn+1 − yn

τ
+Ayn = ϕn.

Estimation of stability:

‖(B + στA2)y
n+1‖B−1 ≤ ‖(B + στA2)y

n‖B−1 + τ‖ϕn‖|B−1 .



Convergene
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Theorem. For error fatored regionally-additive di�erene sheme with σ ≥ 1/2

estimate

‖(B + στA2)z
n+1‖B−1 ≤ M

(
h2 + τ2 +

(
σ −

1

2

)
τ + στ‖χ2‖A

)

holds.

With minimal overlapping of subdomains this estimate gives

‖(B + στA2)z
n+1‖B−1 ≤ M

(
h2 + τ2 +

(
σ −

1

2

)
τ + στH−1/2h−1/2

)
,

where H � step oarse mesh.

The sheme with σ = 1/2 does not inrease order auray. Yet in this ase the

main error term is two times lower ompared to σ = 1.



Multiomponent splitting
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The main lasses of additive shemes

4,5
:

• Shemes of omponentwise splitting;

• Additevely averaged shemes of summarized approximation;

• Regularized additive shemes;

• Vetor additive shemes.

4

G. I. Marhuk, Splitting and alternating diretion methods. Handbook of Numerial Analysis,

Vol. I, pp. 197�462. North-Holland, 1990.

5

P. N. Vabishhevih, Additive Additive Operator-Di�erene Shemes. Splitting Shemes. De

Gruyter, 2013.



Sheme of omponentwise splitting
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The lassi serial version:

(
un+α/p − un+(α−1)/p

τ
, v

)
+ aα(σu

n+α/p + (1− σ)un+(α−1)/p, v) = (fn+1
α , v),

α = 1, 2, ..., p.

The right side:

fn+1
α =

{
0, α = 1, 2, ..., p− 1,
fn+1, α = p.

Unonditional stability when σ ≥ 0.5.



Parallel version
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Additevely averaged shemes:

(
un+1
α − un

α

pτ
, v

)
+ aα(σu

n+1
α + (1− σ)un

α, v) = (fn+1
α , v),

α = 1, 2, ..., p,

(un+1, v) =
1

p

p∑

α=1

(un+1
α , v).



Vetor problem
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Instead of a single unknown u(t) we onsider p unknowns uα, α = 1, 2, ..., p,

whih are determined from the system

(
duα

dt
, v

)
+

p∑

β=1

aβ(uβ, v) = (f, v), α = 1, 2, ..., p, 0 < t ≤ T.

For this system of equations are used the initial onditions

(uα(0), v) = (u0, v), α = 1, 2, ..., p.

Eah omponent is a solution to the original problem.



Vetor additive sheme
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Unonditionally stable two-level sheme (the serial version):

(
un+1
α − un

α

τ
, v

)
+

α∑

β=1

aβ(u
n+1
β , v) +

p∑

β=α+1

aβ(u
n
β , v) = (fn+1, v),

(u0
α, v) = (u0, v), α = 1, 2, ..., p.

Parallel version:

(
un+1
α − un

α

τ
, v

)
+ aα(σu

n+1
α + (1− σ)un

α, v) +

p∑

α6=β=1

aβ(u
n
β , v) = (fn+1, v),

α = 1, 2, ..., p.



Other problems



Hyperboli equations
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∂2u

∂t2
−

m∑

α=1

∂

∂xα

(
k(x)

∂u

∂xα

)
= f(x, t), x ∈ Ω, 0 < t ≤ T.

Boundary onditions:

u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T.

The initial ondition:

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x), x ∈ Ω.



Convetion-di�usion problem
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The symmetrial form:

∂u

∂t
+

1

2

m∑

α=1

(
cα(x, t)

∂u

∂xα
+

∂

∂xα
(cα(x, t)u)

)

−
m∑

α=1

∂

∂xα

(
k(x)

∂u

∂xα

)
= f(x, t), x ∈ Ω, 0 < t ≤ T.

Boundary onditions:

u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T.

The initial ondition:

u(x, 0) = u0(x), x ∈ Ω.



Di�erential-operator problems
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We write the unsteady onvetion-di�usion problems in the form

du

dt
+Au = f(t), 0 < t ≤ T. 0 < t ≤ T,

u(0) = u0.

The operators of di�usive and onvetive transport are seleted:

A = C +D,

Du = −

m∑

α=1

∂

∂xα

(
k(x)

∂u

∂xα

)
,

Cu =
1

2

m∑

α=1

(
vα(x, t)

∂u

∂xα
+

∂

∂xα
(vα(x, t)u)

)
.

Main properties:

D = D∗ > 0, C = −C∗.



DDM splitting

© Petr Vabishhevih and Petr Zakharov DD22, September 16-20, 2013, Lugano, Switzerland

Additive representation of the operator A:

A =

p∑

α=1

Aα, Aα = Cα +Dα, α = 1, 2, ..., p,

in whih

Dαu = −

m∑

α=1

∂

∂xα

(
k(x)ηα(x)

∂u

∂xα

)
,

Cαu =
1

2

m∑

α=1

(
vα(x)ηα(x)

∂u

∂xα
+

∂

∂xα
(vα(x)ηα(x)u)

)
.



Properties of splitting operators

© Petr Vabishhevih and Petr Zakharov DD22, September 16-20, 2013, Lugano, Switzerland

Self-adjoint part of operator A splits into the sum of nonnegative selfadjoint

operators:

Dα = D∗
α ≥ 0, α = 1, 2, ..., p.

Skew of the splitting in the sum of skew-symmetri operators:

Cα = −C∗
α, α = 1, 2, ..., p.

For the individual terms of operator:

Aα = Cα +Dα ≥ 0, α = 1, 2, ..., p.
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