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Introduction



Domain decomposition methods

Domain decomposition methods are used for the numerical solution of boundary
value problems for partial differential equations on parallel computers.

Most fully in the theory of domain decomposition methods are presented for
stationary problems!'2.

Computational algorithms with overlap and without overlap of the subdomains

are used in synchronous (sequential) and asynchronous (parallel) algorithms.

LA. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations,
Numerical Mathematics and Scientific Computation. Oxford: Clarendon Press. xv, 360 p., 1999.

2A. Toselli and O. Widlund, Domain decomposition methods — algorithms and theory, Springer
Series in Computational Mathematics 34. Berlin: Springer. xv, 450 p., 2005.
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Main approaches

Domain decomposition methods for unsteady problems are based on two
approaches?.

1. For approximate solution of time-dependent problems we use ordinary
implicit approximation in time. Domain decomposition methods applied to
solving the discrete problem on the new time level. The number of iterations
in the optimal iterative methods for domain decomposition does not depend
on the discretization steps in time and space.

2. It is notiterative domain decomposition algorithms are constructed for
nonstationary problems. We construct a special scheme of splitting into
subdomains (region-additive schemes).

3A. Samarskii, P. Matus and P. Vabishchevich, Difference schemes with operator factors,
Kluwer Academic Publishers, 2002.
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Regionally additive scheme

A domain decomposition scheme is defined by a decomposition of the
computational domain and by defining the splitting of the operator. To construct
the decomposition operators when solving BVP for PDEs, it is convenient to use
a partition of unity for the computational domain.

In the overlapping DD methods, a function is associated with each subdomain,
and this function takes value between zero and one.

In the extreme case, the width of the overlap of the subdomains is equal to the
space discretization step. In this case the regionally-additive schemes can be
interpreted as non-overlapping domain decomposition schemes, where the
exchange is achieved by setting proper boundary conditions for each of the
subdomain.
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The main issues

Domain decomposition methods for unsteady problems:

Decomposition of domain;
Operators of decomposition;
Splitting scheme;

Study of convergence;

The computational implementation.
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Illustrative example

The boundary value problem for one-dimensional parabolic equation:

ou  O%u

2 =0, O<z<l,

ot  0x?
u(0,t) =0, wu(l,t)=0,

u(z,0) =u’(z), 0<z<lI.

Domain decomposition:

QIQlLJQQ, Q:{CI?|O<CI?<Z}

(© Petr Vabishchevich and Petr Zakharov

0<t<T.
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Decomposition with overlap of subdomains

Q1 =(0,b), Q= (a,l).

The minimal overlay (h — discretization steps in space):

b—a=h.

(© Petr Vabishchevich and Petr Zakharov DD22, September 16-20, 2013, Lugano, Switzerland



Decomposition with minimal overlap

Stencil:

S

The transition to the new time level:

Ql QQ
tn—i—l - - - - - - 8- - —-0--——-& - - # - - - - - -R--——-F--—- @ ---4&
" e ° ° ° o B = » » » |
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Scheme with overlap

Let i =k ut?=k+1—nodes on the boundary of the subdomains:

n n+1 n+1 n+1
it —yp Y1 — 2%y Y —0
T h? ’
el S S/ s o /S AR
T h? 7

n+1 n n+1 n+1 n
Yet1 — Ykt1  Yri2 — Ui UK — 0
T h? .

Unconditional stability (+);
Conditional convergence (—): O(Th~'/2).
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Standard approximation



Parabolic problem

In a bounded domain 2 an unknown function u(x,t) satisfies the following
equation

ou i(“@%)zﬂm,t), rcl, 0<t<T,

in which k(x) > k>0, € Q.
Homogeneous Dirichlet boundary conditions:

u(xe,t) =0, xe€d), 0<t<T.
The 1nitial condition:

u(z,0) =u’(x), xc.
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Notations

Let (-,-),]| - || be the scalar product and the norm in Ly (€2):

(u,v):/gu(m)v(w)dw, | = (u, )72,

A symmetric positive definite bilinear form d(u,v) such that
d(u,v) = d(v,u), d(u,u) = |lull*, ¢>0,

is associated with the Hilbert space H; equipped with the following scalar
product and norm:

(u,v)a = d(u,v),  lullg = (d(u,u)"/2.

Suppose t =t" =n7, n=0,1, ..., where 7 > 0 is a constant time step.
A finite-dimensional space of finite elements is denoted by V", and u™ (u™ € V")
stands for the approximate solution at the time level ¢t = t™.
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The variational problem

dt

(U(O),’U) — (ugvv)v Vv € H(%(Q),

where

a(u,v) = / k(x) grad ugrad v de.
Q

(© Petr Vabishchevich and Petr Zakharov

(d—u,v)+a(u,v):(f,v), Vo € Hy(Q), 0<t<T,
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Schemes with weights

We study the projection-difference scheme

yn—|—1 . yn
( T ’”) +a(oy"™ + (1= o)y, v) = (fot" ! + (1= 0)t"), ),

Yoe V', n=1,2, ..,

where ¢ is a number (weight). If 0 = 0, then the scheme is an explicit
(forward-time) scheme, for o = 1, we obtain a fully implicit (backward-time)
scheme, and o = 0.5 yields a symmetric (the so-called Crank—Nicolson) scheme.
The condition

1
(v,v) + (0— 5) 7 a(v,v) >0, YveV"

is necessary and sufficient for the stability of the scheme in the space H,.
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Decomposition operators



Partition of unity of (2

Domain decomposition scheme we associate with the partition of unity of the
computational domain 2. Let the domain {2 consists of p separate subdomains

Q=0 UQU...UQ,.

Individual subdomains can overlap.
With a separate subdomain €2,, o = 1,2, ...,p we associate the function
Na(x), a=1,2,...,p such that

>0, x €,
7704(33) — { O T gé Qa o = 1727 ooy Dy
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Subdomain splitting

In
du 1
— U + a(u,v) = (f,v), Yve Hy(2), 0<t<T
we have
p p
Z (w, ),  (f,0) =) (fas0),
a=1 a=1
Here

(fa,v) = /Qna(w)f(w,t)v dx

and (standard decomposition)

aq(u,v) = / Na(x)k(x) gradugradv de, o =1,2,...,p.
Q
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Other variants

aq (u,v) = /Qk(il?) grad u grad(ne (x)v) d,

aq(u,v) = / k(x) grad(ne(x)u) gradv de, a=1,2,...,p.
Q
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Operator form

We have
dy
BE + Ay =p(t), 0<t<T,
y(0) =9°.

Here the mass matrix
B =B*">0,
the stiflness matrix

A=A" > 0.
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Operator splitting

We have

with (standard decomposition)

Aa =AL>0, a=12,..

Symmetrized equation:

(© Petr Vabishchevich and Petr Zakharov

y D-

= B Y24, B7Y2 a=1,2,..p.
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oplitting schemes



Two-component splitting (p = 2)

Douglas-Rachford scheme

Peaceman—Rachford scheme

Factorized scheme

Symmetrical scheme of componentwise splitting
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Douglas-Rachford scheme

(un—l—l/2 oy

,v) + al(unH/Q,v) + as(u™,v) = (f’”’“,v),
-

un—|—1 —um
( ) +ay (W2 0) 4 ag (™t v) = (7 ),
T

Yoe V', n=12,..

The problem in the subdomain (explicit-implicit scheme):
(un—|—1/2, ’U) + Tay (un—|—1/27 “U) _ (Xn, ’U),

(u",0) + Tag(ut,v) = (X", 0).

(© Petr Vabishchevich and Petr Zakharov DD22, September 16-20, 2013, Lugano, Switzerland



Schemes with weights

un—|—1/2 —u" n+1/2 n n n+1/2
) b an(ou (L o)t v) + as(u™ ) = (£, ),
utt — " n+1/2 o n n+1 o n _ (fn+1/2
- U | Faq(ou +(1—0)u",v)+az(cu" " +(1—0)u",v) = (f L),

Yoe V', n=12,..

o = 1/2 — Peaceman-Rachford scheme,
o = 1 — Douglas-Rachford scheme.
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Factorized scheme

The operator form:

(B+o07A)B (B + O'TAQ)y + Ay" = ",

Estimation of stability:

I(B+o7A2)y" g1 < (B +o07A2)y" |51 + T]¢" ||| -1
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Convergence

Theorem. For error factored regionally-additive difference scheme with o > 1/2
estimate

1
(B + O'TAQ)Zn—'_lHB—l <M (h2 2 (a — 5) T+ UTHXQHA)

holds.
With minimal overlapping of subdomains this estimate gives

1
|(B + o7 A2)z" g2 < M (h Fry (a - 5) T+MH—1/2h—1/2) ,

where H — step coarse mesh.
The scheme with o = 1/2 does not increase order accuracy. Yet in this case the
main error term is two times lower compared to o = 1.
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Multicomponent splitting

The main classes of additive schemes®°:

Schemes of componentwise splitting;

Additevely averaged schemes of summarized approximation;
Regularized additive schemes;

Vector additive schemes.

4G. I. Marchuk, Splitting and alternating direction methods. Handbook of Numerical Analysis,

Vol. I, pp. 197-462. North-Holland, 1990.
5P. N. Vabishchevich, Additive Additive Operator-Difference Schemes. Splitting Schemes. De

Gruyter, 2013.
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Scheme of componentwise splitting

The classic serial version:

nt+a/p _ ., n+(a—1)/p
(L ) o (1= o) = (7 )

T
a=1,2,..p.
The right side:
fn—|—1 — 07 o = 1;27---7]9_1;
“ il a=p.

Unconditional stability when o > 0.5.
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Parallel version

Additevely averaged schemes:

un—|—1 —u”
( - O{’/U) * aa(0u2+1 T (1 o O')UZ,’U) — (fg—i_lav)v

pT
a:1727' 7p7
p
(i p) = }Z n+l
P4
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Vector problem

Instead of a single unknown u(t) we consider p unknowns u,, a=1,2,...,p,
which are determined from the system

du,, Y
(L7”)+Z%(uﬁ,v)=(ﬁv), a=12..,p, 0<t<T.
B=1

For this system of equations are used the initial conditions
(ua(0),2) = (u¥,v), a=1,2,..,p.

Each component is a solution to the original problem.
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Vector additive scheme

Unconditionally stable two-level scheme (the serial version):

un—l—l_un @ p
( £ a,v)+zaﬁ<ug“,v>+ S as(ulh) = (7 0),

.
B=1 B=a+1

(w?,v) = (W’,v), a=1,2,..,p.

Parallel version:

un—l—l —un Y
( ) a?”) +aa(aug+1+(1—0)uga”v)+ Z aﬂ(ugav):(fn+17v)7
T af=1
a=1,2,...,p.
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Other problems



Hyperbolic equations

@_ii(k(m)ﬂ) = f(z,t), z€Q, 0<t<T.

Boundary conditions:

wz,t) =0, z€d, 0<t<T.

The 1nitial condition:
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Convection-diffusion problem

The symmetrical form:

Ty (ca(w,t) af?xua aia (o (. t)u ))

a=1

_Za% ( 8(9;;) = flz,t), €O, 0<t<T.
Boundary conditions:

u(x,t) =0, e, 0<t<T.
The initial condition:

u(z,0) = ul(x), x <.
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Differential-operator problems

We write the unsteady convection-diffusion problems in the form

d
§%+Au—f@% O0<t<T. 0<t<T,
u(0) = u®.

The operators of diffusive and convective transport are selected:

(o)

9
( 2z, t) 5’% 62@ (Ve (2, t)u )).

A=C+D,

Main properties:

D=D">0, C=-C".
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DDM splitting
Additive representation of the operator A:

p
A:ZAOM Aa:Ca+Daa 04:1727"'7]97

in which .
R o CCUCTC
Can=3 - (@@ + 5 )
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Properties of splitting operators

Self-adjoint part of operator A splits into the sum of nonnegative selfadjoint
operators:

D,=D; >0, a=1,2,..,p.

Skew of the splitting in the sum of skew-symmetric operators:
Co=-C., a=1,2,..p.

For the individual terms of operator:

Ao =Co +Dy >0, a=1,2,....p.
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