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Summary. The purpose of this paper is to introduce a BDDC method for
vector field problems discretized with the lowest order Raviart-Thomas finite
elements. Our method is based on a new type of weighted average, a deluxe
scaling, developed to deal with more than one variable coefficient. Numerical
experiments show that the deluxe scaling is robust and more powerful than
traditional methods.
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1 Introduction

Let Ω be a bounded polyhedral domain in R3. We will work with the Hilbert
space H(div;Ω), the subspace of vector valued functions u ∈ (L2(Ω))3 with
divu ∈ L2(Ω). The space H0(div;Ω) is the subspace of H(div;Ω) with a
vanishing normal component on the boundary ∂Ω.

We will consider the following problem: Find u ∈ H0(div;Ω), such that

a(u,v) :=

∫
Ω

(α divudivv + β u · v)dx =

∫
Ω

f · v dx, v ∈ H0(div;Ω).(1)

We will assume that the coefficient α ∈ L∞(Ω) is nonnegative, that β ∈
L∞(Ω) is strictly positive, and that the right hand side f ∈ (L2(Ω))3.

The model problem (1) is equivalent to the variational forms of mixed or
first order system least-squares formulations as in [3]. There are also other
applications of H(div), e.g., in the sequential regularization method for the
Navier-Stokes equations; see [12].
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The main purpose of this paper is to construct a BDDC preconditioner for
vector field problems discretized with Raviart-Thomas finite elements. Itera-
tive substructuring methods for such problems were first considered in [25].
Other iterative substructuring methods for these types of problems have been
developed in [19]. Overlapping Schwarz methods have also been introduced;
see [1, 14, 15, 16]. Other methods such as multigrid methods have been ap-
plied successfully in [2, 8, 10]. We also remark that domain decomposition
methods for H(curl) problems were introduced in [5, 7, 9, 20, 21, 22]. BDDC
methods for other problems related to H (div) can be found in [18, 23, 24].

In the construction of a BDDC preconditioners, a set of primal constraints
and a weighted averaging technique have to be chosen and these choices will
very directly affect the performance. Effective primal constraints are very
simple for the Raviart-Thomas elements; we choose the average value of the
normal component over the subdomain faces as primal variables. However,
the choice of averaging is much more intricate. We will use a new type of
weighted averaging technique introduced in [6] for three dimensional H(curl)
problems.

2 Preliminary

We first introduce a triangulation Th of Ω of hexahedral elements. We will
consider the lowest order Raviart-Thomas elements on mesh Th. We then
decompose the domain Ω into N nonoverlapping subdomains Ωi. We also
define the global interface Γ and the local interface Γi by

Γ :=

(
N⋃
i=1

∂Ωi

)
\∂Ω, Γi := Γ ∩ ∂Ωi,

respectively.
Let W (i) be the space of the finite elements on Ωi with a zero normal

component on ∂Ω ∩ ∂Ωi. We decompose W (i) into two subspaces, W
(i)
Γ and

W
(i)
I . Here, W

(i)
Γ is the interface space which consists of degrees of freedom

corresponding to Γi and W
(i)
I is the space of discrete unknowns of the interior

of Ωi. The space W
(i)
Γ can be decomposed into a primal space W

(i)
Π and a dual

space W
(i)
∆ . In general, the functions in WΓ :=

∏N
i=1W

(i)
Γ have discontinuous

normal components across the interface while those of the finite element
solutions are continuous. We denote the continuous subspace by ŴΓ (⊂WΓ ).

We next define operators R
(i)
Γ : ŴΓ → W

(i)
Γ which extract the degrees of

freedom associated with Γi. Similarly, we define a space W̃Γ , for which all

the primal constraints are enforced. We next define local operators R
(i)

Γ :

W̃Γ → W
(i)
Γ which extract the degrees of freedom corresponding to Γi. We
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also define the global operator R̃Γ : ŴΓ → W̃Γ . Finally, we introduce the
scaled operator R̃D,Γ : ŴΓ → W̃Γ obtained by pre-multiplying the entries of

R̃Γ associated with W
(i)
∆ by a scaling matrix D(i). The discrete form of our

problem is written in terms of local stiffness matrices as[
AII AIΓ
AΓI AΓΓ

] [
uI
uΓ

]
=

N∑
i=1

[
A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

][
u
(i)
I

u
(i)
Γ

]
=

N∑
i=1

[
f
(i)
I

f
(i)
Γ

]
. (2)

Before we introduce the BDDC algorithm, we eliminate all interior un-
knowns locally. After this step, we obtain these local Schur complements:

S
(i)
Γ := A

(i)
ΓΓ −A

(i)
ΓIA

(i)−1
II A

(i)
IΓ .

By using the local Schur complements, we can build a reduced interface
problem. The global problem is given by

ŜΓuΓ = gΓ , (3)

where

ŜΓ :=

N∑
i=1

R
(i)T
Γ S

(i)
Γ R

(i)
Γ and gΓ :=

N∑
i=1

R
(i)T
Γ

(
fΓ −A(i)

ΓIA
(i)−1
II f

(i)
I

)
.

Moreover, we have the partially assembled Schur complement S̃Γ :

S̃Γ =

N∑
i=1

R
(i)

Γ

T

S
(i)
Γ R

(i)

Γ . (4)

3 BDDC

We consider a BDDC preconditioner to solve the interface problem (3). We
can find background information and a description of the algorithm in [4, 11].
The BDDC preconditioner has the following form:

M−1 = R̃TD,Γ S̃
−1
Γ R̃D,Γ . (5)

It is convenient to make a change of variables by introducing a basis for
the primal degrees of freedom and a complementary basis for the dual sub-

space W
(i)
∆ . Here we can follow the recipes of [11, subsection 3.3] closely. For

our problem, the only primal variables will be the averages of the normal
component over the subdomain faces.

In order to specify the algorithm completely, we need to define the weighted
averaging operator D(i). Conventional weighted averaging techniques, known
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as stiffness and ρ scalings, are described in [4, 13]. However, these methods
are designed for constant coefficients or for one variable coefficient. For more
than one variable coefficient, we need a different approach and we will use the
new weighted averaging technique introduced in [6] for H(curl) problems.

Let Fij be the common face of two adjacent subdomains Ωi and Ωj . More-

over, let R
(i)
Fij

be the restriction operator which extracts the degrees of free-
dom on Fij from those on Γi. Then, the two Schur complements associated

with Fij are given by S
(i)
Fij

= R
(i)
Fij
S
(i)
Γ R

(i)
Fij

T
and S

(j)
Fij

= R
(j)
Fij
S
(j)
Γ R

(j)
Fij

T
. We

will use the scaling matrices D
(i)
j :=

(
S
(i)
Fij

+ S
(j)
Fij

)−1
S
(i)
Fij

. We note that we

can apply the operator
(
S
(i)
Fij

+ S
(j)
Fij

)−1
by solving a Dirichlet problem on

Ωi ∪ Fij ∪Ωj with zero Dirichlet boundary conditions. The scaling operator
D(i) is then given by a block diagonal matrix with the diagonal components

D
(i)
j1
, D

(i)
j2
, · · · , D(i)

jk
, where j1, j2, . . . , jk ∈ Ni and Ni is the set of indices of

the Ωj ’s (i 6= j) which share a subdomain face with Ωi.

The condition number of M−1ŜΓ is bounded by C (1 + logH/h)
2
, where

the constant C does not depend on the size of subdomain and mesh size as
well as the coefficients and their jumps between subdomains. Due to space
restriction, a detailed analysis will not be reported here. Further details are
provided in [17].

4 Numerical results

We have applied the BDDC algorithm to our model problem (1). For algo-
rithmic details, we follow [11]. We set Ω = (0, 1)3 and decompose the unit
cube into N3 identical cubic subdomains. Each subdomain has a side length
H = 1/N . Moreover, we assume that the coefficients α and β have jumps
across the interface between the subdomains with a checkerboard pattern in
which (α, β) for a subdomain is either (αb, βb) or (αw, βw). We discretize the
model problem (1) by using the lowest order hexahedral Raviart-Thomas fi-
nite elements and use the preconditioned conjugate gradient method to solve
the discretized problem. The iteration is stopped when the l2−norm of the
residual has been reduced by a factor of 10−6.
We first fix the value of β and vary α. Second, we fix the value of α and vary
β. Tables 1 and 2 show the first two sets of results. We next use a different
distribution, instead of the checkerboard distribution. We first generate 2N3

random numbers {rαi}i=1,...,N2 and {rβi}i=1,...,N2 in [−3, 3] with a uniform
distribution. We then assign 10rαi and 10rβi for αi and βi, respectively. The
third set of results can be found in Table 3. We see that the condition number
is insensitive to the jumps of coefficients.

We next report on numerical experiments for the case where coefficients
have jumps inside the subdomains. For each subdomain Ωi, we let Ωoi =
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Table 1 Condition numbers and iteration counts (in parentheses). Checkerboard pattern

and N = 4.

(αb, βb) (αw, βw) H/h = 2 H/h = 4 H/h = 8 H/h = 16

(10−2, 1) (1, 1) 1.64 (7) 2.32 (9) 3.26 (11) 4.37 (13)

(10−1, 1) (1, 1) 1.80 (7) 2.64 (9) 3.70 (12) 4.94 (13)

(1, 1) (1, 1) 1.83 (7) 2.69 (10) 3.75 (11) 5.01 (14)
(101, 1) (1, 1) 1.83 (7) 2.69 (10) 3.76 (11) 5.02 (14)

(102, 1) (1, 1) 1.83 (7) 2.69 (10) 3.76 (11) 5.02 (14)

Table 2 Condition numbers and iteration counts (in parentheses). Checkerboard pattern

and N = 4.

(αb, βb) (αw, βw) H/h = 2 H/h = 4 H/h = 8 H/h = 16

(1, 10−2) (1, 1) 1.03 (3) 1.06 (4) 1.09 (4) 1.12 (4)
(1, 10−1) (1, 1) 1.28 (5) 1.53 (6) 1.89 (8) 2.31 (9)

(1, 101) (1, 1) 1.27 (5) 1.51 (6) 1.85 (7) 2.27 (9)

(1, 102) (1, 1) 1.02 (3) 1.05 (4) 1.08 (4) 1.12 (4)

Table 3 Condition numbers and iteration counts (in parentheses). Random coefficients

and N = 4.

H/h = 2 H/h = 4 H/h = 8 H/h = 16

Set 1 1.80 (8) 2.69 (11) 3.76 (13) 5.01 (16)
Set 2 1.65 (8) 2.37 (9) 3.39 (11) 4.61 (14)

Set 3 1.78 (8) 2.50 (10) 3.49 (12) 4.82 (14)

Set 4 1.67 (8) 2.50 (10) 3.50 (12) 4.68 (14)

Set 5 1.74 (8) 2.49 (10) 3.45 (13) 4.54 (15)

{(x, y, z) | 1/4 ≤ xo, yo, zo ≤ 1/2,wherexo = x/H − bx/Hc, yo = y/H −
by/Hc, and zo = z/H − bz/Hc.}. Here, bxc = max{m ∈ Z |m ≤ x}, where
Z is the set of integers. We use the αi and βi specified in Table 1 and 2
as coefficients for Ωi\Ωoi . For Ωoi , we assign 100αi and 100βi and with αi
and βi in a checkerboard pattern. Table 4 and 5 show the results. We see
that our method works well even though we have discontinuities inside the
subdomains.

Table 4 Condition numbers and iteration counts (in parentheses). Specified values as

indicated in Table 1 with jumps inside subdomains and N = 4.

H/h = 4 H/h = 8 H/h = 16

αb = 10−2 2.32 (9) 3.34 (11) 4.41 (13)

αb = 10−1 2.64 (9) 3.83 (12) 5.05 (14)
αb = 100 2.69 (10) 3.90 (12) 5.16 (14)

αb = 101 2.69 (10) 3.91 (12) 5.17 (14)
αb = 102 2.69 (10) 3.91 (12) 5.17 (14)

Finally, for a comparison, we report on some numerical experiments using
conventional techniques. We have performed three different types of exper-
iments with the same set of coefficient distributions. The first set of exper-
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Table 5 Condition numbers and iteration counts (in parentheses). Specified values as

indicated in Table 2 with jumps inside subdomains and N = 4.

H/h = 4 H/h = 8 H/h = 16

βb = 10−2 1.05 (4) 1.09 (4) 1.13 (4)

βb = 10−1 1.51 (6) 1.90 (8) 2.34 (9)
βb = 101 1.53 (6) 1.95 (8) 2.39 (9)

βb = 102 1.06 (4) 1.09 (4) 1.13 (4)

iments, named “deluxe”, is based on the deluxe scaling techniques. In the
second, “diag”, we use the conventional methods described in [4, 13]. In this
case, the scaling is based on the diagonal entries of each subdomain matrix.
We use the cardinality in the last set, “card”. For Raviart-Thomas elements,
only two subdomains share a subdomain face in common. Hence, we use 1/2
as scaling factors. As we see in Table 6, our weighted averaging technique
works well while the others are sensitive to the discontinuities across the
interface.

Table 6 Condition numbers and iteration counts (in parentheses). Checkerboard pattern,

N = 4, and H/h = 8.

(αb, βb) (αw, βw) deluxe diag card

(10−3, 103) (1, 1) 1.05e0 (3) 9.03e2 (47) 2.66e2 (43)
(10−2, 102) (1, 1) 1.17e0 (4) 1.88e2 (36) 5.13e1 (31)

(10−1, 101) (1, 1) 1.82e0 (7) 7.22e1 (43) 2.19e1 (30)

(101, 10−1) (1, 1) 1.89e0 (8) 8.63e1 (48) 2.61e1 (32)
(102, 10−2) (1, 1) 1.09e0 (4) 1.01e3 (74) 2.58e2 (66)

(103, 10−3) (1, 1) 1.01e0 (3) 1.48e4 (130) 3.71e3 (120)

We remark that the deluxe scaling technique requires additional compu-
tational costs for solving local subproblems on each subdomain face. Exper-
imentally, conventional methods are approximately 5 to 6 times faster than
deluxe scaling in each iteration. However, deluxe scaling requires much less
iteration counts especially for the case where we have large jumps between
subdomains. Hence, we can expect a better performance. We note that a
more computationally efficient version of deluxe scaling is introduced in [7].
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