A locking-free hybrid DGFEM for nearly incompressible materials

Daisuke Koyama (The University of Electro-Communications) Fumio Kikuchi (Professor Emeritus, The University of Tokyo) Sho Ihara (The University of Tokyo)

July 8, 2015

Introduction

Contents

Plane StrainProblem

Volume Locking

* A volume locking phenomenon in the conforming P_1 FEM

 $\clubsuit\, {\rm Error} \ {\rm vs.} \ \lambda$

Vector fields

Remedies for the Volume Locking

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

Introduction

Contents

Introduction

Contents

- Plane StrainProblem
- Volume Locking
- A volume locking phenomenon in the conforming P_1 FEM
- Vector fields
- Remedies for the Volume Locking
- Hybrid DGFEMs
- Coerciveness
- Theoretical Analysis
- Numerical Examples
- Conclusion

- 1. Plane strain problem
- 2. Volume Locking, which is an unpreferable phenomenon.
- 3. Two kinds of Hybrid DGFEMs (Discontinuous Galerkin Finite Element Methods) are introduced.
 - One of them is locking free, and the other one is not.
- These facts are shown theoretically and numerically.
 Conclusion

Plane Strain Problem

Introduction

Contents

- Plane Strain
 Problem
- Volume LockingA volume locking

phenomenon in the conforming P_1 FEM

- **&** Error vs. λ
- Vector fields
- Remedies for the Volume Locking

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

 $\underline{u} = [u_1, u_2]^T$: two-dimensional displacement of the elastic body.

The strain tensor $\underline{\varepsilon}(\underline{u}) = [\varepsilon_{ij}(\underline{u})]_{ij}$ is given by

 $\varepsilon_{ij}(\underline{u}) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) (1 \le i, j \le 2).$

We use an underline (resp. double underlines) to denote two dimensional vector (resp. 2×2 matrix) valued functions, operators, and their associated spaces.

Plane Strain Problem

Introduction

Contents

Plane Strain
 Problem

Volume Locking

A volume locking phenomenon in the conforming P_1 FEM

 $\clubsuit\, {\rm Error} \ {\rm vs.} \ \lambda$

Vector fields

 Remedies for the Volume Locking

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

The isotropic linear elastic stress-strain relation is written by

 $\underline{\sigma}(\underline{u}) = 2\mu \underline{\varepsilon}(\underline{u}) + \lambda(\operatorname{div} \underline{u}) \underline{\delta},$

where λ and μ are Lamé parameters,

$$\underline{\delta} := \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right].$$

We assume $\lambda > 0$ and $\mu = 1$ in this talk.

Plane Strain Problem

Introduction

Contents

Plane Strain
 Problem

Volume Locking

A volume locking phenomenon in the conforming P_1 FEM

 $\clubsuit\, {\rm Error} \ {\rm vs.} \ \lambda$

Vector fields

Remedies for the Volume Locking

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

We consider the following plane strain problem:

$$\begin{cases} -\underline{\operatorname{div}}\,\underline{\sigma}(\underline{u}) &= \underline{f} \quad \text{in} \quad \Omega, \\ \underline{u} &= \underline{0} \quad \text{on} \quad \partial\Omega, \end{cases}$$

 $\underline{f} = [f_1, f_2]^T$ is a distributed external body force per unit in-plane area.

Volume Locking

Introduction

ContentsPlane StrainProblem

Volume Locking

✤ A volume locking phenomenon in the conforming P₁ FEM

 $\clubsuit\, {\rm Error} \ {\rm vs.} \ \lambda$

Vector fieldsRemedies for the Volume Locking

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

- When the Lamé constant λ (> 0) is large, the accuracy of FE solutions obtained by using coarse meshes is bad. So we need to use sufficiently fine meshes to obtain satisfactory FE solutions.
 - Babuška–Suri(1992) presented a mathematical definition of the volume locking. Our theoretical analysis will be based on it.
- It is well known that P_1 conforming FEM causes a volume locking phenomenon.

A volume locking phenomenon in the conforming P₁ FEM

Introduction

Contents

Plane Strain
 Problem

Volume Locking

♦ A volume locking phenomenon in the conforming P_1 FEM

 $\clubsuit\, {\rm Error} \ {\rm vs.} \ \lambda$

Vector fields

 Remedies for the Volume Locking

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

Domain $\Omega := (0, 1) \times (0, 1)$. We determine the exact solution \underline{u} by

> $\psi(x) := x^2(x-1)^2,$ $\Psi(x_1, x_2) := -\frac{1}{2}\psi(x_1)\psi(x_2) \quad \text{(stream function)},$ $\underline{u} := \operatorname{rot} \Psi.$

- The exact solution is independent of λ and satisfies $\operatorname{div} \underline{u} = 0$.
- This test problem is presented in Bercovier–Livne (1979) and Soon–Cockburn–Stolarski (2009).

A volume locking phenomenon in the conforming P₁ FEM

Introduction

- Contents
- Plane Strain
 Problem
- Volume Locking

* A volume locking phenomenon in the conforming P_1 FEM

 $\clubsuit\, {\rm Error} \ {\rm vs.} \ \lambda$

Vector fields
Remedies for the Volume Locking

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

Let us solve the test problem by P_1 conforming FEM. We use 4 meshes which are obtained by dividing each side of Ω into $2^j \times 10$ (j = 0, 1, ..., 3)equi-length line segments. To make these meshes, we used Gmsh [15].

Error vs. λ

Introduction

Contents

Plane Strain Problem

Volume Locking

♦ A volume locking phenomenon in the conforming P_1 FEM

\diamond Error vs. λ

Vector fields

✤ Remedies for the Volume Locking

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

Introduction

Contents

Plane StrainProblem

Volume Locking

 \clubsuit A volume locking phenomenon in the conforming P_1 FEM

 $\clubsuit\, {\rm Error} \ {\rm vs.} \ \lambda$

Vector fields

Remedies for the Volume Locking

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

- Contents
- Plane Strain Problem
- Volume Locking
- ♦ A volume locking phenomenon in the conforming P_1 FEM
- **\diamond** Error vs. λ

Vector fields

- ✤ Remedies for the Volume Locking
- Hybrid DGFEMs
- Coerciveness
- Theoretical Analysis
- Numerical Examples
- Conclusion

Introduction

- Contents
- Plane Strain
 Problem
- Volume Locking
- \clubsuit A volume locking phenomenon in the conforming P_1 FEM
- $\clubsuit\, {\rm Error} \ {\rm vs.} \ \lambda$

Vector fields

- Remedies for the Volume Locking
- Hybrid DGFEMs
- Coerciveness
- Theoretical Analysis
- Numerical Examples
- Conclusion

Remedies for the Volume Locking

Introduction

- Contents
- Plane Strain
 Problem
- Volume Locking
- A volume locking phenomenon in the conforming P_1 FEM
- **\bullet** Error vs. λ
- Vector fields
- Remedies for the Volume Locking
- Hybrid DGFEMs
- Coerciveness
- Theoretical Analysis
- Numerical Examples
- Conclusion

High-order FE

- + Babuška–Suri, 1992
- Mixed methods
 - ✦ Arnold–Brezzi–Douglas, 1984
 - ✦ Stenberg, 1988
 - ✦ Jeon–Sheen, 2013
- Non-conforming FE
 - Brenner–Sung, 1992
- DG
 - Hansbo–Larson, 2002 (not Hybirid type)
 - ♦ Wihler, 2004 (not Hybirid type)
 - Soon–Cockburn–Stolarski, 2009 (a hybrid type different from ours)
 - Di Pietro–Nicaise, 2013 (not Hybrid type)

Introduction

Hybrid DGFEMs

- A hybrid version of SIP method • Weak formulation in our Hybrid DGFEM • Bilinear form $a_{\eta}^{h}(\cdot, \cdot)$ with penalty parameter $\eta > 0$
- Lifting term
- (Interior) Penalty term
- Another bilinear form $b^h_\eta(\cdot,\ \cdot)$
- What motivates us to exclude the lifting term?
- Semi-discrete
 problem
- **\diamond** Submatrix A_{22}
- Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Hybrid DGFEMs

A hybrid version of SIP method

Introduction

Hybrid DGFEMs

A hybrid version of SIP method

 Weak formulation in our Hybrid
 DGFEM

***** Bilinear form $a_{\eta}^{h}(\cdot, \cdot)$ with penalty parameter $\eta > 0$

- Lifting term
- (Interior) Penalty term

 $\mbox{ \ \ } \mbox{ \ \ } \mbox{ \ \ } \mbox{ \ \ } \label{eq: horizontal bilinear form } b^h_\eta(\cdot,\ \cdot)$

What motivates us to exclude the lifting term?

Semi-discrete
 problem

***** Submatrix A_{22}

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

- We consider a hybrid version of SIP (Symmetric Interior Penalty) method, which is called Hybrid DGFEM in this talk.
- The SIP method was first investigated by Wheeler (1978) and Arnold (1982).
- The hybrid version has been investigated by the following authors:
 - Laplace eq.: Oikawa–Kikuchi (2010)
 - Linear elasticity eq.: Kikuchi–Ishii–Oikawa (2009)
 - Convection diffusion eq.: Oikawa (2014)
 - Stokes eq.: Egger–Waluga (2013)
 - Rellich-type discrete compactness: Kikuchi (2012)

Weak formulation in our Hybrid DGFEM

Introduction

Hybrid DGFEMs

A hybrid version of SIP method

Weak formulation in our Hybrid DGFEM

- ♦ Bilinear form $a_{\eta}^{h}(\cdot, \cdot)$ with penalty parameter $\eta > 0$
- Lifting term
- (Interior) Penalty term
- What motivates us to exclude the lifting term?
- Semi-discrete
 problem
- **\diamond** Submatrix A_{22}
- Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

\mathcal{T}^h : a triangulation of $\Omega \subset \mathbb{R}^2$.

- We assume that a family of triangulations $\{\mathcal{T}^h\}_{0 < h \leq \overline{h}}$ is regular in the sense of Ciarlet.
- \mathcal{E}^h : the set of all edges of \mathcal{T}^h .
- $\Gamma^h := \bigcup \overline{e}$, which is called skeleton.

 $e{\in}\mathcal{E}^h$

Weak formulation in our Hybrid DGFEM

Introduction

Hybrid DGFEMs

A hybrid version of SIP method

 Weak formulation in our Hybrid
 DGFEM

$$\label{eq:bilinear form} \begin{split} & \mathbf{\delta}_{\eta}^{h}(\cdot, \ \cdot) \text{ with} \\ & \text{penalty parameter} \\ & \eta > 0 \end{split}$$

Lifting term

 (Interior) Penalty term

What motivates us to exclude the lifting term?

Semi-discrete
 problem

***** Submatrix A_{22}

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Let $\underline{u} (\in \underline{H}^{s}(\Omega))$ (s > 3/2) be the exact solution of the plane strain problem.

We denote the trace on the skeleton Γ^h of \underline{u} by $\underline{\hat{u}}$, i.e., $\underline{\hat{u}} := \underline{u}|_{\Gamma^h}$.

We call $\underline{\hat{u}}$ Numerical Trace (NT) in this talk.

In Hybrid version, we treat \underline{u} and $\underline{\hat{u}}$ as unknowns.

We approximate \underline{u} and $\underline{\hat{u}}$ by piecewise linear functions, i.e., we use the following FE spaces:

 $U^h := \prod_{K \in \mathcal{T}^h} P_1(K)$

(piecewise linear functions on Ω),

 $\widehat{U}^h := \prod_{e \in \mathcal{E}^h} P_1(e)$

(piecewise linear functions on Γ^h).

Weak formulation in our Hybrid DGFEM

Introduction

Hybrid DGFEMs A hybrid version of SIP method

♦ Weak formulation in our Hybrid DGFEM

Lifting term

 (Interior) Penalty term

 Another bilinear form $b^h_\eta(\cdot,\ \cdot)$

What motivates us to exclude the lifting term?

Semi-discrete
 problem

\diamond Submatrix A_{22}

♦ Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Then $\underline{u} := \{\underline{u}, \underline{\hat{u}}\}$ satisfies the following weak form

 $a_{\eta}^{h}(\underline{\boldsymbol{u}},\,\underline{\boldsymbol{v}}) = \left(\underline{f},\,\underline{v}\right)_{\Omega}$

sheet.

for all $\underline{\boldsymbol{v}} := \{\underline{v}, \, \underline{\hat{v}}\} \in \underline{H}^s(\mathcal{T}^h) \times \underline{L}^2_D(\Gamma^h).$

broken Sobolev space: $\forall s > 0$,

 $H^{s}(\mathcal{T}^{h}) := \left\{ v \in L^{2}(\Omega); \ v|_{K} \in H^{s}(K), \ \forall K \in \mathcal{T}^{h} \right\}.$

(·, ·)_Ω: the standard inner product of L²(Ω).
L²_D(Γ^h) := { v̂ ∈ L²(Γ^h) | v̂ = 0 on ∂Ω }.
We will define the bilinear form a^h_η(·, ·) on the next

Bilinear form $a_{\eta}^{h}(\cdot, \cdot)$ with penalty parameter $\eta > 0$

Introduction

Hybrid DGFEMs A hybrid version of SIP method Weak formulation in our Hybrid DGFEM Bilinear form $a_{\eta}^{h}(\cdot, \cdot)$ with penalty parameter $\eta > 0$

Lifting term

 (Interior) Penalty term

Another bilinear form $b^h_\eta(\cdot, \cdot)$

What motivates us to exclude the lifting term?

Semi-discreteproblem

\diamond Submatrix A_{22}

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

 $\begin{aligned} a_{\eta}^{h}(\underline{u}, \underline{v}) \\ &:= \sum_{K \in \mathcal{T}^{h}} \left[2\mu \left(\underline{\varepsilon}(\underline{u}), \underline{\varepsilon}(\underline{v}) \right)_{K} + \lambda \left(\operatorname{div} \underline{u}, \operatorname{div} \underline{v} \right)_{K} \right. \\ &\left. + \underbrace{\left\langle \underline{\sigma}(\underline{u})\underline{n}, \, \underline{\hat{v}} - \underline{v} \right\rangle_{\partial K}}_{\mathbf{Consistency term}} + \underbrace{\left\langle \underline{\hat{u}} - \underline{u}, \, \underline{\sigma}(\underline{v})\underline{n} \right\rangle_{\partial K}}_{\mathbf{Symmetry term}} \right] \\ &\left. + \underbrace{L^{h}(\underline{u}, \, \underline{v})}_{\mathbf{Lifting term}} + \underbrace{\eta I^{h}(\underline{u}, \, \underline{v})}_{\mathbf{Penalty term}} \right. \end{aligned}$

• $(\cdot, \cdot)_K$ and $\langle \cdot, \cdot \rangle_{\partial K}$ are the standard inner products of $L^2(K)$ and $L^2(\partial K)$, respectively.

Lifting term

Introduction

Hybrid DGFEMs

```
A hybrid version of SIP method
Weak formulation in our Hybrid DGFEM
Bilinear form a_{\eta}^{h}(\cdot, \cdot) with penalty parameter \eta > 0
```

Lifting term

 (Interior) Penalty term

 Another bilinear form $b^h_\eta(\cdot,\ \cdot)$

What motivates us to exclude the lifting term?

Semi-discrete
 problem

***** Submatrix A_{22}

✤ Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

For each $K \in \mathcal{T}^h$, a local lifting operator:

$$R_i^K : L^2(\partial K) \longrightarrow P_0(K) \quad (i = 1, 2)$$

is defined by

$$(R_i^K g, \varphi)_K = \langle g, \varphi n_i \rangle_{\partial K} \quad \forall g \in L^2(\partial K), \quad \forall \varphi \in P_0(K).$$

 $P_0(K)$: the set of constant functions on K. $\underline{n} = [n_1, n_2]^T$: the outward unit normal \underline{n} on ∂K . Lifting operator R_i^K corresponds to the differential operator $\partial/\partial x_i$.

Lifting term

Introduction

Hybrid DGFEMs

A hybrid version of SIP method
Weak formulation in our Hybrid DGFEM
Bilinear form $a_{\eta}^{h}(\cdot, \cdot)$ with penalty parameter $\eta > 0$

Lifting term

- (Interior) Penalty term
- Another bilinear form $b^h_\eta(\cdot,\ \cdot)$
- What motivates us to exclude the lifting term?
- Semi-discreteproblem
- $\clubsuit \, {\rm Submatrix} \, {\cal A}_{22}$
- ✤ Hybrid DGFEMs
- Coerciveness

Theoretical Analysis

Numerical Examples

July 8, 2015 Conclusion The lifting operators corresponding to div, ε_{ij} , and $\underline{\varepsilon}$ are defined as follows: for $g = [g_1, g_2]^T \in \underline{L}^2(\partial K)$,

$$R_{\operatorname{div}}^{K}\underline{g} := \sum_{i=1}^{2} R_{i}^{K} g_{i},$$

$$R_{\varepsilon_{ij}}^{K}\underline{g} := \frac{1}{2} \left(R_{i}^{K} g_{j} + R_{j}^{K} g_{i} \right) \quad (1 \le i, j \le 2),$$

$$\underline{R}_{\varepsilon}^{K}(\underline{g}) := \left[R_{\varepsilon_{ij}}^{K}\underline{g} \right]_{1 \le i, j \le 2}.$$

Lifting term

Introduction

SIP method

in our Hybrid DGFEM

penalty parameter

Hybrid DGFEMs

♦ A hybrid version of

Weak formulation

We finally define

$L^{h}(\underline{u}, \underline{v})$ $:= \sum_{K \in \mathcal{T}^{h}} \left[2\mu \left(\underline{R_{\varepsilon}^{K}}(\hat{\underline{u}} - \underline{u}), \underline{R_{\varepsilon}^{K}}(\hat{\underline{v}} - \underline{v}) \right)_{K} + \lambda \left(R_{\text{div}}^{K}(\hat{\underline{u}} - \underline{u}), R_{\text{div}}^{K}(\hat{\underline{v}} - \underline{v}) \right)_{K} \right].$

Lifting term

 $\eta > 0$

(Interior) Penalty term

What motivates us to exclude the lifting term?

Semi-discreteproblem

\diamond Submatrix A_{22}

✤ Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

(Interior) Penalty term

Introduction

Hybrid DGFEMs A hybrid version of SIP method Weak formulation in our Hybrid DGFEM Bilinear form $a_n^h(\cdot, \cdot)$ with

```
penalty parameter \eta > 0
```

```
Lifting term
```

(Interior) Penalty term

 Another bilinear form $b^h_\eta(\cdot,\ \cdot)$

What motivates us to exclude the lifting term?

Semi-discrete
 problem

***** Submatrix A_{22}

✤ Hybrid DGFEMs

Coerciveness

Conclusion

Theoretical Analysis

Numerical Examples

Bilinear form I^h is defined as follows: $\forall \underline{u} = \{\underline{u}, \underline{\hat{u}}\}, \ \underline{v} = \{\underline{v}, \underline{\hat{v}}\} \in \underline{H}^1(\mathcal{T}^h) \times \underline{L}^2(\Gamma^h),$

$$I^{h}(\underline{\boldsymbol{u}},\,\underline{\boldsymbol{v}}) := \sum_{K\in\mathcal{T}^{h}}\sum_{e\in\mathcal{E}^{K}}\frac{1}{|e|}\left\langle \underline{\hat{\boldsymbol{u}}} - \underline{\boldsymbol{u}},\,\underline{\hat{\boldsymbol{v}}} - \underline{\boldsymbol{v}}\right\rangle_{e}.$$

 \mathcal{E}^{K} : the set of all edges of K. |e|: the length of an edge e.

 $\langle \cdot, \cdot \rangle_e$: the standard inner product on $L^2(e)$.

Another bilinear form $b_{\eta}^{h}(\cdot, \cdot)$

Introduction

Hybrid DGFEMs

A hybrid version of SIP method
Weak formulation in our Hybrid DGFEM
Bilinear form $a_{\eta}^{h}(\cdot, \cdot)$ with penalty parameter $\eta > 0$

Lifting term

(Interior) Penalty term

What motivates us to exclude the lifting term?

Semi-discrete
 problem

\diamond Submatrix A_{22}

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

July 8, 2015 Conclusion We also consider another bilinear form $b_{\eta}^{h}(\cdot, \cdot)$ obtained by subtracting the lifting term from a_{η}^{h} :

$$b_{\eta}^{h}(\underline{\boldsymbol{u}},\,\underline{\boldsymbol{v}}) := a_{\eta}^{h}(\underline{\boldsymbol{u}},\,\underline{\boldsymbol{v}}) - L^{h}(\underline{\boldsymbol{u}},\,\underline{\boldsymbol{v}}).$$

Another bilinear form $b_{\eta}^{h}(\cdot, \cdot)$

Introduction

Hybrid DGFEMs

A hybrid version of SIP method
Weak formulation in our Hybrid DGFEM
Bilinear form $a_{\eta}^{h}(\cdot, \cdot)$ with penalty parameter $\eta > 0$

Lifting term

(Interior) Penalty term

 b_n^h

What motivates us to exclude the lifting term?

Semi-discreteproblem

***** Submatrix A_{22}

♦ Hybrid DGFEMs

Coerciveness

Conclusion

Theoretical Analysis

Numerical Examples

We also consider another bilinear form $b_{\eta}^{h}(\cdot, \cdot)$ obtained by subtracting the lifting term from a_{η}^{h} :

$$b_{\eta}^{h}(\underline{\boldsymbol{u}},\,\underline{\boldsymbol{v}}) := a_{\eta}^{h}(\underline{\boldsymbol{u}},\,\underline{\boldsymbol{v}}) - L^{h}(\underline{\boldsymbol{u}},\,\underline{\boldsymbol{v}}).$$

$$(\underline{u}, \underline{v}) = \sum_{K \in \mathcal{T}^{h}} \left[2\mu \left(\underline{\varepsilon}(\underline{u}), \underline{\varepsilon}(\underline{v}) \right)_{K} + \lambda \left(\operatorname{div} \underline{u}, \operatorname{div} \underline{v} \right)_{K} \right. \\ \left. + \left\langle \underline{\sigma}(\underline{u})\underline{n}, \, \underline{\hat{v}} - \underline{v} \right\rangle_{\partial K} + \left\langle \underline{\hat{u}} - \underline{u}, \, \underline{\sigma}(\underline{v})\underline{n} \right\rangle_{\partial K} \right] \\ \left. \underbrace{\operatorname{Consistency term}}_{H = \underline{\eta} I^{h}(\underline{u}, \, \underline{v})} \right]$$

$$Symmetry term$$

What motivates us to exclude the lifting term?

Introduction

Hybrid DGFEMs A hybrid version of SIP method Weak formulation in our Hybrid DGFEM Bilinear form $a_{\eta}^{h}(\cdot, \cdot)$ with penalty parameter $\eta > 0$

Lifting term

 (Interior) Penalty term

What motivates us to exclude the lifting term?

Semi-discrete
 problem

\diamond Submatrix A_{22}

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Now let us consider a time-dependent elastic wave equation and boundary conditions:

 $\frac{\partial^2 \underline{u}}{\partial t^2} - \underline{\operatorname{div}} \,\underline{\sigma}(\underline{u}) = \underline{f} \quad \text{in } \Omega,$ $\underline{u} = \underline{0} \quad \text{on } \partial \Omega.$

Semi-discrete problem

Introduction

Hybrid DGFEMs A hybrid version of SIP method Weak formulation in our Hybrid DGFEM Bilinear form $a_{\eta}^{h}(\cdot, \cdot)$ with penalty parameter $\eta > 0$ Lifting term (Interior) Penalty term Another bilinear

* Another bilineat form $b^h_\eta(\cdot, \cdot)$

What motivates us to exclude the lifting term?

Semi-discrete
 problem

 $\bigstar \text{Submatrix } A_{22}$

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Ily 8, 2015 Clusion Its semi-discrete problem can be represented as a differential-algebraic equation:

$$\frac{d^2}{dt^2} \begin{bmatrix} M_{11} & O \\ O & O \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \hat{\mathbf{u}}(t) \end{bmatrix} + \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix} \begin{bmatrix} \mathbf{u}(t) \\ \hat{\mathbf{u}}(t) \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{f}(t) \\ \mathbf{0} \end{bmatrix}.$$

Deleting $\hat{\boldsymbol{u}},$ we can reduce this equation to

$$\frac{d^2}{dt^2}M_{11}\boldsymbol{u}(t) + \left(A_{11} - A_{12}A_{22}^{-1}A_{12}^T\right)\boldsymbol{u}(t) = \boldsymbol{f}(t).$$

Submatrix A_{22}

Introduction

Hybrid DGFEMs

A hybrid version of SIP method
Weak formulation in our Hybrid DGFEM
Bilinear form $a_{\eta}^{h}(\cdot, \cdot)$ with penalty parameter $\eta > 0$

- Lifting term
- (Interior) Penalty term

What motivates us to exclude the lifting term?

Semi-discrete
 problem

Submatrix A_{22}

✤ Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

July 8, 2015 Conclusion

To numerically solve

 $\frac{d^2}{dt^2}M_{11}\boldsymbol{u}(t) + \left(A_{11} - A_{12}A_{22}^{-1}A_{12}^T\right)\boldsymbol{u}(t) = \boldsymbol{f}(t),$

we need to compute the following matrix–vector product: $A_{22}^{-1}\vec{v}$.

- If we exclude the lifting term and if we properly choose a basis of $P_1(e)^2$ for each $e \in \mathcal{E}^h$, then A_{22} can be the unit matrix, and hence we do not need to compute $A_{22}^{-1}\vec{v}$.
- If we add the lifting term, then A_{22} is NOT a block diagonal matrix, and hence we have to compute $A_{22}^{-1}\vec{v}$ with much effort.
 - NOTE: For steady problems, we can also use another Schur complement matrix: $A_{22} - A_{12}^T A_{11}^{-1} A_{12}$. A_{11} can be the unit matrix.

Hybrid DGFEMs

Introduction

Hybrid DGFEMs

```
A hybrid version of SIP method
Weak formulation in our Hybrid DGFEM
Bilinear form a_{\eta}^{h}(\cdot, \cdot) with
```

```
penalty parameter \eta > 0
```

```
Lifting term
```

```
    (Interior) Penalty 
term
```

 Another bilinear form $b^h_\eta(\cdot,\ \cdot)$

What motivates us to exclude the lifting term?

Semi-discrete
 problem

Submatrix A₂₂
Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

July 8, 2015 Conclusion

We consider two types of Hybrid DGFEMs:

1. DG with Lifting term (DG-wL): find $\underline{u}^h = \{\underline{u}^h, \underline{\hat{u}}^h\} \in \underline{V}^h$ such that

$$a_{\eta}^{h}(\underline{\boldsymbol{u}}^{h}, \, \underline{\boldsymbol{v}}^{h}) = (\underline{f}, \, \underline{v}^{h})_{\Omega} \quad \forall \underline{\boldsymbol{v}}^{h} \in \underline{\boldsymbol{V}}^{h}.$$

2. DG without Lifting term (DG-woL): find $\underline{u}^h = \{\underline{u}^h, \underline{\hat{u}}^h\} \in \underline{V}^h$ such that

$$b^h_\eta(\underline{\boldsymbol{u}}^h, \, \underline{\boldsymbol{v}}^h) = (\underline{f}, \, \underline{v}^h)_\Omega \quad \forall \underline{\boldsymbol{v}}^h \in \underline{\boldsymbol{V}}^h$$

$$\widehat{V}^{h} := \widehat{U}^{h} \cap L_{D}^{2}(\Gamma^{h}) \text{ and } \underline{V}^{h} := \underline{U}^{h} \times \underline{\widehat{V}}^{h}.$$
$$L_{D}^{2}(\Gamma^{h}) := \left\{ \widehat{v} \in L^{2}(\Gamma^{h}) \mid \widehat{v} = 0 \text{ on } \partial\Omega \right\}.$$

Hybrid DGFEMs

Introduction

Hybrid DGFEMs ♦ A hybrid version of SIP method Weak formulation in our Hybrid DGFEM ♦ Bilinear form $a_{\eta}^{h}(\cdot, \cdot)$ with penalty parameter $\eta > 0$ Lifting term ♦ (Interior) Penalty term Another bilinear form $b_{\eta}^{h}(\cdot, \cdot)$ What motivates us to exclude the lifting term?

Semi-discrete
 problem

\diamond Submatrix A_{22}

♦ Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Our goal is to show the following two facts theoretically and numerically:

- 1. DG-wL is locking free.
- 2. DG-woL can not prevent locking phenomena.

Introduction

Hybrid DGFEMs

Coerciveness

 $\stackrel{\ensuremath{\bullet}}{a^h_\eta}$ and b^h_η

***** Lower bound η_0

\diamond Exact Lower Bound of η^h_{LB}

• Minimum eigenvalue of B_{η}^{h}

 $\$ Comparison between η_0 and $\eta^h_{\rm LB}$

Theoretical Analysis

Numerical Examples

Conclusion

Coerciveness

Coerciveness of a^h_η and b^h_η

Introduction

Hybrid DGFEMs

Coerciveness

***** Lower bound η_0

***** Exact Lower Bound of η_{LB}^h

• Minimum eigenvalue of B_n^h

 $\$ Comparison between η_0 and $\eta^h_{\rm LB}$

Theoretical Analysis

Numerical Examples

Conclusion

Proposition 1 $\exists C > 0$ such that $\forall \eta > 0$, $\forall \lambda > 0$, $\forall h \in (0, \bar{h}]$, and $\forall \underline{v}^h \in \underline{V}^h$,

$$a_{\eta}^{h}(\underline{\boldsymbol{v}}^{h}, \underline{\boldsymbol{v}}^{h}) \geq C \min\{1, \eta\} \|\underline{\boldsymbol{v}}^{h}\|_{\underline{\boldsymbol{V}}^{h}}^{2},$$

where C is independent of λ , h, η , and \underline{v}^h .

Proposition 2 $\exists C > 0$ such that $\forall \eta > \eta_0 := 2C_r(\lambda + 2\mu)$, $\forall \lambda > 0, \forall h \in (0, \bar{h}]$, and $\forall \underline{v}^h \in \underline{V}^h$,

 $b_{\eta}^{h}(\underline{\boldsymbol{v}}^{h}, \underline{\boldsymbol{v}}^{h}) \geq C \min\{1, \eta\} \|\underline{\boldsymbol{v}}^{h}\|_{\underline{\boldsymbol{V}}^{h}}^{2},$

where *C* is independent of λ , h, η , and \underline{v}^h , and C_r will be given below.

Coerciveness of a^h_η and b^h_η

Introduction

Hybrid DGFEMs

- Coerciveness
- ***** Lower bound η_0
- **\diamond** Exact Lower Bound of η^h_{LB}
- Minimum eigenvalue of B_n^h
- $\$ Comparison between η_0 and $\eta^h_{\rm LB}$
- Theoretical Analysis
- Numerical Examples
- Conclusion

If we use a_n^h , we take an arbitrary η .

- If we use $b_{\eta}^{\dot{h}}$ and if we adopt the sufficient condition: $\eta > \eta_0 = 2C_r(\lambda + 2\mu)$, then we have to take $\eta = O(\lambda)$ as $\lambda \longrightarrow \infty$.
- Is it reasonable to use the sufficient condition in practical computations?
- We numerically examine how well η_0 estimates the exact lower bound η_{LB}^h , which is given as follows:

$$\eta_{\rm LB}^h = \inf\{\eta > 0 \mid b_\eta^h \text{ is coercive}\}.$$

Coerciveness of a^h_η and b^h_η

Introduction

Hybrid DGFEMs

Coerciveness

Coerciveness of a_n^h and b_n^h

\diamond Lower bound η_0

Sound of η^h_{LB}

• Minimum eigenvalue of B_n^h

Theoretical Analysis

Numerical Examples

Conclusion

Here a norm of \underline{V}^h is defined as follows: $\forall \{ \boldsymbol{v}, \, \hat{\boldsymbol{v}} \} \in \underline{V}^h$, $\|\{ \boldsymbol{v}, \, \hat{\boldsymbol{v}} \}\|_{\underline{V}^h}^2$ $:= \sum_{K \in \mathcal{T}^h} \left\{ |\boldsymbol{v}|_{H^1(K)}^2 + \sum_{e \in \mathcal{S}K} \left[\frac{1}{|e|} |\hat{\boldsymbol{v}} - \boldsymbol{v}|_e^2 + |e| |\nabla \boldsymbol{v}|_e^2 \right] \right\}.$
Lower bound η_0

Introduction

Hybrid DGFEMs

Coerciveness

 Coerciveness of a^h_η and b^h_η

\diamond Lower bound η_0

***** Exact Lower Bound of η_{LB}^h

• Minimum eigenvalue of B_n^h

 $\$ Comparison between η_0 and $\eta^h_{\rm LB}$

Theoretical Analysis

Numerical Examples

Conclusion

The constant C_r in the definition of $\eta_0 := 2C_r(\lambda + 2\mu)$: appears in the following estimate.

Lemma 1 There exists a positive constant C_r such that for all $h \in (0, \bar{h}]$, for all $K \in \mathcal{T}^h$, and for all $g \in \prod_{e \in \mathcal{E}^K} P_k(e)$,

$$\left\| R_{i}^{K} g \right\|_{K}^{2} \leq C_{r} \sum_{e \in \mathcal{E}^{K}} \frac{1}{|e|} |g|_{e}^{2} \quad (i = 1, 2),$$

where C_r is independent of h, K, and g.

Lower bound η_0

Introduction

Hybrid DGFEMs

Coerciveness

 \bullet Coerciveness of a^h_η and b^h_η

\bullet Lower bound η_0

\diamond Exact Lower Bound of η^h_{LB}

• Minimum eigenvalue of B_{η}^{h}

Theoretical Analysis

Numerical Examples

Conclusion

- If K is an isosceles right triangle, we can find that $C_r = 4$.
- In numerical computations below, we use triangulations of Friedrichs–Keller (FK) type as shown in the figure below, whose elements are all isosceles right triangles.

Exact Lower Bound of $\eta_{\rm LB}^h$

Introduction

Hybrid DGFEMs

Coerciveness

 $\ensuremath{\bigstar}$ Coerciveness of a^h_η and b^h_η

& Lower bound η_0

• Minimum eigenvalue of B_n^h

 $\$ Comparison between η_0 and $\eta^h_{\rm LB}$

Theoretical Analysis

Numerical Examples

Conclusion

To numerically seek the exact lower bound $\eta^h_{\rm LB}$, we compute the minimum eigenvalue of the matrix B^h_η defined by

$$(B^h_\eta \vec{u}^h, \vec{v}^h)_{\mathbb{R}^n} = b^h_\eta(\underline{\boldsymbol{u}}^h, \underline{\boldsymbol{v}}^h) \quad \forall \underline{\boldsymbol{u}}^h, \underline{\boldsymbol{v}}^h \in \underline{\boldsymbol{V}}^h,$$

where we identify \underline{V}^h with \mathbb{R}^n ($n := \dim \underline{V}^h$), and correspondingly $\underline{v}^h \in \underline{V}^h$ with $\vec{v}^h \in \mathbb{R}^n$.

Minimum eigenvalue of B^h_η

Minimum eigenvalue of B_n^h

Minimum eigenvalue of B^h_η

Minimum eigenvalue of B^h_η

h=0.1 h=0.05 ---×--10000 15000 25000 30000 20000 eta $\lambda = 1000$

Introduction

Hybrid DGFEMs

Coerciveness

```
♦ Coerciveness of a_{\eta}^{h} and b_{\eta}^{h}
♦ Lower bound \eta_{0}
♦ Exact Lower
Bound of \eta_{LB}^{h}
```

• Minimum eigenvalue of B_n^h

♦ Comparison between η_0 and $\eta^h_{\rm LB}$

Theoretical Analysis

Numerical Examples

Conclusion

We plot η_0 and η_{LB}^h for $\lambda = 10^i$ (i = 0, 1, ..., 4) in the figures below, where the red line displays η_0 and the green one η_{LB}^h .

Introduction

Hybrid DGFEMs

Coerciveness

```
♦ Coerciveness of a_{\eta}^{h} and b_{\eta}^{h}
♦ Lower bound \eta_{0}
♦ Exact Lower
Bound of \eta_{LB}^{h}
```

• Minimum eigenvalue of B_n^h

♦ Comparison between η_0 and $\eta^h_{\rm LB}$

Theoretical Analysis

Numerical Examples

Conclusion

We plot η_0 and η_{LB}^h for $\lambda = 10^i$ (i = 0, 1, ..., 4) in the figures below, where the red line displays η_0 and the green one η_{LB}^h .

Introduction

Hybrid DGFEMs

Coerciveness

```
♦ Coerciveness of a_{\eta}^{h} and b_{\eta}^{h}
♦ Lower bound \eta_{0}
♦ Exact Lower
Bound of \eta_{LB}^{h}
```

• Minimum eigenvalue of B_n^h

♦ Comparison between η_0 and $\eta^h_{\rm LB}$

Theoretical Analysis

Numerical Examples

Conclusion

We plot η_0 and η_{LB}^h for $\lambda = 10^i$ (i = 0, 1, ..., 4) in the figures below, where the red line displays η_0 and the green one η_{LB}^h .

 10^{4}

Introduction

Hybrid DGFEMs

Coerciveness

- ***** Coerciveness of a^h_η and b^h_η
- **\diamond** Lower bound η_0
- **\diamond** Exact Lower Bound of η_{LB}^h
- Minimum eigenvalue of B_n^h

♦ Comparison between η_0 and $\eta^h_{\rm LB}$

Theoretical Analysis

Numerical Examples

Conclusion

Here we note that the solution of DG(-wL or -woL) \underline{u}_{η}^{h} converges to the solution of the conforming FEM $\underline{u}_{\text{FEM}}^{h}$ as $\eta \longrightarrow \infty$, that is,

$$\|\underline{\boldsymbol{u}}_{\eta}^{h} - \underline{\boldsymbol{u}}_{\text{FEM}}^{h}\|_{\underline{\boldsymbol{V}}^{h}} = O(\eta^{-1/2}) \quad (\eta \longrightarrow \infty).$$

This suggests that if we take $\eta = O(\lambda)$ as $\lambda \longrightarrow \infty$, then locking phenomena may occur, because P_1 conforming FEM causes locking phenemena.

We will show this fact theoretically and numerically in what follows.

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

An a priori error estimate for DG-wL
Sketch of Proof of Theorem 1

Locking Ratio

DG-wL is locking free.

* DG-woL shows locking of order h^{-1}

Numerical Examples

Conclusion

Theoretical Analysis

An a priori error estimate for DG-wL

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis
An a priori error estimate for DG-wL

 Sketch of Proof of Theorem 1

Locking Ratio

DG-wL is locking free.

♦ DG-woL shows locking of order h^{-1}

Numerical Examples

Conclusion

Theorem 1 Assume that $\lambda > 0$ and $\eta \in [\eta_1, \eta_2]$ with $0 < \eta_1 < \eta_2$. Let $\underline{u} \in H_0^1(\Omega)^2$ be the solution of the plane strain problem. Assume that $\underline{u} \in \underline{H}^2(\Omega)$. Further let $\underline{\hat{u}} := \underline{u}|_{\Gamma^h}$. Let $\underline{u}^h \in \underline{V}^h$ be the solution of DG-wL. Then we have

 $\|\underline{\boldsymbol{u}} - \underline{\boldsymbol{u}}^h\|_{\underline{\boldsymbol{V}}^h} \le Ch \|\underline{\boldsymbol{u}}\|_{2,\Omega},$

where *C* is a positive constant independent of $\lambda > 0$, η , *h*, and <u>u</u>.

Sketch of Proof of Theorem 1

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis
An a priori error estimate for DG-wL
Sketch of Proof of Theorem 1

Locking Ratio
DG-wL is locking free.

 DG-woL shows $locking of order
 h^{-1}$

Numerical Examples

Conclusion

- This can be proved by a well-known method, which is also used in Hansbo–Larson (2002), Wihler (2004), Di Pietro–Nicaise (2013), and so on.
 - That is, we reformulate the elasticity problem as a Stokes problem with nonzero divergence constrain, and establish a uniform inf-sup condition.
 - The uniform inf-sup condition can be established by the method of proof due to Egger-Waluga (2013).

Locking Ratio

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis
An a priori error estimate for DG-wL
Sketch of Proof of Theorem 1

Locking Ratio

DG-wL is locking free.

♦ DG-woL shows locking of order h^{-1}

Numerical Examples

١

Conclusion

We define the so-called locking ratio due to Babuška–Suri (1992).

For $\lambda > 0$, we define a solution space: $B^{\lambda} := \left\{ \underline{v} \in \underline{H}^{2}(\Omega) \cap \underline{H}^{1}_{0}(\Omega) \mid \| \underline{v} \|_{H^{2}(\Omega)} + \lambda \| \operatorname{div} \underline{v} \|_{H^{1}(\Omega)} \leq 1 \right\}.$

For every $\underline{u} \in B^{\lambda}$ and for every $\lambda > 0$, let $\underline{u}_{\lambda}^{h} \in \underline{V}^{h}$ satisfy

$$a_{\eta}^{h}(\underline{u}_{\lambda}^{h}, \underline{v}^{h}) = a_{\eta}^{h}(\underline{u}, \underline{v}^{h}) \quad \forall \underline{v}^{h} \in \underline{V}^{h},$$

where $\underline{u} := \{\underline{u}, \underline{u}|_{\Gamma^{h}}\}.$

Locking Ratio

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

An a priori error estimate for DG-wL
Sketch of Proof of Theorem 1

Locking Ratio

DG-wL is locking free.

* DG-woL shows locking of order h^{-1}

Numerical Examples

Conclusion

We define the locking ratio $L(\lambda, h)$ for $\lambda > 0$ and $h \in (0, \bar{h}]$,

$$L(\lambda, h) := \frac{\sup_{\underline{u}\in B^{\lambda}} \|\underline{u} - \underline{u}_{\lambda}^{h}\|_{\underline{V}^{h}}}{\sup_{\underline{u}\in B^{\lambda}} \inf_{\underline{v}^{h}\in\underline{V}^{h}} \|\underline{u} - \underline{v}^{h}\|_{\underline{V}^{h}}}.$$

Now there exist positive constants C_1 and C_2 such that $C_1 h \leq \sup_{\underline{u} \in B^{\lambda}} \inf_{\underline{v}^h \in \underline{V}^h} \|\underline{u} - \underline{v}^h\|_{\underline{V}^h} \leq C_2 h \quad \forall h \in (0, \bar{h}].$

This implies that we may redefine the locking ratio as follows:

$$L(\lambda, h) := \frac{\sup_{\underline{u} \in B^{\lambda}} \|\underline{u} - \underline{u}_{\lambda}^{h}\|_{\underline{V}^{h}}}{h} \quad \text{(cf. [21, 7])}.$$

DG-wL is locking free.

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

An a priori error estimate for DG-wL
Sketch of Proof of Theorem 1

Locking Ratio

♦ DG-wL is locking free.

♦ DG-woL shows locking of order h^{-1}

Numerical Examples

Conclusion

DG-wL is locking free with respect to the solution set B^{λ} and the norm $\|\cdot\|_{V^h}$ in the sense of Babuška-Suri, i.e.,

 $\limsup_{h \to +0} \sup_{\lambda > 0} L(\lambda, h) < \infty.$

Indeed, we see from the a priori error estimate in Theorem 1 that

 $\frac{\|\underline{\boldsymbol{u}} - \underline{\boldsymbol{u}}^h\|_{\underline{\boldsymbol{V}}^h}}{h} \le C \|\underline{\boldsymbol{u}}\|_{2,\Omega} \le C,$

where C is a positive constant independent of h and λ .

DG-woL shows locking of order h^{-1}

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

An a priori error estimate for DG-wL
Sketch of Proof of Theorem 1

```
Locking Ratio
DG-wL is locking free.
```

♦ DG-woL shows locking of order h^{-1}

Numerical Examples

Conclusion

In DG-woL, we must take $\eta = O(\lambda)$. So we assume $\eta = c\lambda$, where c is a positive constant. Let $\underline{u}_{\lambda}^{h} \in \underline{V}^{h}$ satisfy

$$b_{c\lambda}^{h}(\underline{\boldsymbol{u}}_{\lambda}^{h}, \underline{\boldsymbol{v}}^{h}) = b_{c\lambda}^{h}(\underline{\boldsymbol{u}}, \underline{\boldsymbol{v}}^{h}) \quad \forall \underline{\boldsymbol{v}}^{h} \in \underline{\boldsymbol{V}}^{h}.$$

We now pose a hypothesis:

(L)
$$\{\underline{v}^h \in \underline{V}^h_c \mid \operatorname{div} \underline{v}^h = 0\} = \{\underline{0}\} \quad \forall h \in (0, \bar{h}],$$

where

 $\underline{V}_{c}^{h} := \underline{U}^{h} \cap \underline{H}_{0}^{1}(\Omega) \quad (P_{1} \text{ conforming FE space}).$

It is well-known that almost all triangulations satisfy (L) (see Mercier(1979), Boffi–Brezzi–Fortin(2013)).

DG-woL shows locking of order h^{-1}

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

An a priori error estimate for DG-wL
Sketch of Proof of Theorem 1

Locking Ratio

DG-wL is locking free.

♦ DG-woL shows locking of order h⁻¹

Numerical Examples

Conclusion

Theorem 2 Assume that a family of triangulations $\{\mathcal{T}^h\}_{0 < h \leq \overline{h}}$ satisfies (L). DG-woL with $\eta = c\lambda$ (c > 0) shows locking of order h^{-1} with respect to the solution set B^{λ} and the norm $\|\cdot\|_{\underline{V}^h}$ in the sense of Babuška–Suri, that is,

$$0 < \limsup_{h \to +0} \left[\frac{h}{\lambda > 0} L(\lambda, h) \right] < +\infty.$$

Proof. This is established in a similar way to the way which Brenner–Scott(2008) used to prove that P_1 conforming FEM causes locking phenomena.

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Test problem

Locking ratio

\bullet Error vs. $\lambda \in \Lambda$

✤ Vector fields by

 $\mathsf{DG\text{-}wL}\,(\lambda=10^7)$

• Vector fields by DG-woL ($\lambda = 10^7$)

Conclusion

Numerical Examples

Test problem

IntroductionHybrid DGFEMsCoercivenessTheoretical AnalysisNumerical Examples \diamond Test problem \diamond Locking ratio \diamond Error vs. $\lambda \in \Lambda$ \diamond Vector fields by

DG-wL ($\lambda = 10^7$)

• Vector fields by DG-woL ($\lambda = 10^7$)

Conclusion

We use the same test problem that we used at the start.

- **Domain** $\Omega := (0, 1) \times (0, 1)$.
- We fix Lamé parameter $\mu = 1$.
- We determine the exact solution \underline{u} by

$$\psi(x) := x^2(x-1)^2,$$

$$\Psi(x_1, x_2) := -\frac{1}{2}\psi(x_1)\psi(x_2) \quad \text{(stream function)},$$

$$\underline{u} := \operatorname{rot} \Psi.$$

- The exact solution is independent of λ and satisfies $\operatorname{div} \boldsymbol{u} = 0$.
- This test problem is presented in Bercovier–Livne (1979) and Soon–Cockburn–Stolarski (2009).

Test problem

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

```
Numerical Examples
```

Test problem

Locking ratio

♦ Error vs. $\lambda \in \Lambda$ ♦ Vector fields by

 $\mathsf{DG-wL}\,(\lambda = 10^7)$

• Vector fields by DG-woL ($\lambda = 10^7$)

Conclusion

We use 4 meshes which are obtained by dividing each side of Ω into $2^j \times 10$ (j = 0, 1, ..., 3)equi-length line segments.

	meshes	η
DG-wL	unstructured	1
DG-woL	structured (FK type)	$\eta_0 \equiv 8(\lambda + 2\mu)$

Locking ratio

- Hybrid DGFEMs
- Coerciveness
- Theoretical Analysis
- Numerical Examples
- Test problem
- Locking ratio
- ★ Error vs. $\lambda \in \Lambda$ ★ Vector fields by DG-wL ($\lambda = 10^7$) ★ Vector fields by DG-woL ($\lambda = 10^7$)
- Conclusion

Let <u>u</u> be the exact solution.
We consider the following solution set:

 $B^{\lambda} := \{ \alpha \underline{u} \mid |\alpha| \le 1 \} \,.$

- Let $L(\lambda, h)$ be the locking ratio with respect to the solution set B^{λ} and the norm $\|\cdot\|_{\mathbf{V}^{h}}$.
- As an approximation of $\sup_{\lambda>0} L(\overline{\lambda}, h)$, we compute

 $\max_{\lambda \in \Lambda} L(\lambda, h) \quad \left(\Lambda := \{10^j \mid j = 0, 1, \dots, 12\}\right).$

• We plot these values for DG-wL and DG-woL in the following figure.

Locking ratio

Error vs. $\lambda \in \Lambda$

Error vs. $\lambda \in \Lambda$

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Test problem

Locking ratio

 $\clubsuit \operatorname{Error} \mathsf{vs.} \ \lambda \in \Lambda$

• Vector fields by DG-wL ($\lambda = 10^7$)

• Vector fields by DG-woL ($\lambda = 10^7$)

Conclusion

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Test problem

Locking ratio

 $\clubsuit \operatorname{Error} \mathsf{vs.} \ \lambda \in \Lambda$

• Vector fields by DG-wL ($\lambda = 10^7$)

• Vector fields by DG-woL ($\lambda = 10^7$)

Conclusion

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Test problem

Locking ratio

 $\clubsuit \operatorname{Error} \mathsf{vs.} \ \lambda \in \Lambda$

• Vector fields by DG-wL ($\lambda = 10^7$)

• Vector fields by DG-woL ($\lambda = 10^7$)

Conclusion

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

Conclusion

References

Conclusion
Conclusion

References

DG-wL prevents volume locking phenomena. Because we can choose a small η in DG-wL.

On the other hand, when we use DG-woL, we have to choose $\eta = O(\lambda) \ (\lambda \longrightarrow \infty)$. This choice causes volume locking phenomena.

We conclude that the lifting term is important for avoiding the volume locking in our Hybrid DGFEM formulation.

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

Conclusion

References

- [1] F. Kikuchi, K. Ishii and I. Oikawa, Discontinuous Galerkin FEM of hybrid displacement type – development of polygonal elements –, Theor. Appl. Mech. Japan, 57 (2009), 395–404.
- [2] I. Oikawa, Hybridized discontinuous Galerkin method with lifting operator, JSIAM Lett., **2** (2010), 99–102.
- [3] I. Oikawa and F. Kikuchi, Discontinuous Galerkin FEM of hybrid type, JSIAM Lett., **2** (2010), 49–52.
- [4] I. Oikawa, Hybridized discontinuous Galerkin method for convection-diffusion problems, Jpn. J. Ind. Appl. Math., 31 (2014), 335–354.

Introduction
Hybrid DGFEM

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

Conclusion

✤ References

- [5] D. Koyama and F. Kikuchi, A hybridized discontinuous Galerkin FEM with lifting operator for plane elasticity problems, Discussion papers No. 2014-04, Graduate School of Economics, Hitotsubashi University, 2014.
- [6] T.P. Wihler, Locking-free DGFEM for elasticity problems in polygons. IMA J. Numer. Anal., **24** (2004), 45–75.
- [7] Babuška, Ivo; Suri, Manil: Locking effects in the finite element approximation of elasticity problems. Numer. Math. 62 (1992), no. 4, 439–463.
- [8] Arnold, Douglas N.; Brezzi, Franco; Douglas, Jim, Jr.: PEERS: a new mixed finite element for plane elasticity. Japan J. Appl. Math. 1 (1984), no. 2, 347–367.

Introduction	[0] O
Hybrid DGFEMs	[9] S
Coerciveness	el
Theoretical Analysis	5
Numerical Examples	[10] R
Conclusion	
Conclusion	e
♦ References	С

tenberg, Rolf: A family of mixed finite elements for the lasticity problem. Numer. Math. 53 (1988), no. 5, 13-538.

- renner, Susanne C.; Sung, Li-Yeng: Linear finite lement methods for planar linear elasticity. Math. omp. **59** (1992), no. 200, 321–338.
- [11] Franca, Leopoldo P.; Stenberg, Rolf: Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28 (1991), no. 6, 1680-1697.
- [12] Hansbo, Peter; Larson, Mats G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method. Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 17-18, 18951908.

Introduction

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

Conclusion

✤ References

[13] Soon, S.-C.; Cockburn, B.; Stolarski, Henryk K.: A hybridizable discontinuous Galerkin method for linear elasticity. Internat. J. Numer. Methods Engrg. 80 (2009), no. 8, 10581092.

[14] Bercovier, M.; Livne, E.: A 4 CST quadrilateral element for incompressible materials and nearly incompressible materials. Calcolo **16** (1979), no. 1, 519.

 [15] Geuzaine, Christophe; Remacle, Jean-François: Gmsh:
A 3-D finite element mesh generator with built-in preand post-processing facilities. Internat. J. Numer.
Methods Engrg. 79 (2009), no. 11, 13091331.

[16] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Third edition, Texts in Applied Mathematics, 15, Springer, New York, 2008.

Intr	od.	Intra	n
	()())		
	000		

Hybrid DGFEMs

Coerciveness

Theoretical Analysis

Numerical Examples

Conclusion

Conclusion

References

- [17] Jeon, Youngmok; Sheen, Dongwoo: A locking-free locally conservative hybridized scheme for elasticity problems. Jpn. J. Ind. Appl. Math. **30** (2013), no. 3, 585–603.
- [18] S. C. Brenner, Korn's inequalities for piecewise H^1 vector fields, Math. Comp., **73** (2004), 1067–1087.
- [19] Nguyen, N. C.; Peraire, J.; Cockburn, B.: High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230 (2011), no. 10, 3695–3718.

[20] Wheeler, Mary Fanett: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978), no. 1, 152–161.

Introduction	
Hybrid DGFEMs	
Coerciveness	
Theoretical Analysis	
Numerical Examples	
Conclusion	
Conclusion	

References

- [21] Babuška, Ivo; Suri, Manil: On locking and robustness in the finite element method. SIAM J. Numer. Anal. 29 (1992), no. 5, 1261–1293.
- [22] Boffi, Daniele; Brezzi, Franco; Fortin, Michel: Mixed finite element methods and applications. Springer Series in Computational Mathematics, 44. Springer, Heidelberg, 2013.

[23] Mercier, Bertrand: Lectures on topics in finite element solution of elliptic problems. With notes by G. Vijayasundaram. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 63. Tata Institute of Fundamental Research, Bombay, 1979.