

A Fast Elliptic Solver based on Hierarchical Schur Complements in Cyclic Reduction

Gustavo Chavez, Hatem Ltaief, George Turkiyyah, Rio Yokota & David Keyes

> Extreme Computing Research Center KAUST

Outline

- Niche
 - applications where iterative methods are hard to tune and direct methods have non-optimal complexity
 - emerging fine-grained, SIMD-style architectures
- Hierarchical matrices
- Cyclic reduction
- Accelerated cyclic reduction
- Exact solver for 2D
 - numerical experiments
- Preconditioner for 3D
 - preliminary numerical experiments
- Future directions

Context

- It is hard to beat
 - multigrid
 - domain decomposition

for weak scaling to a million nodes, SPMD-style

- with memory resources (bandwidth and capacity) proportional to the number of nodes
- one MPI process per node
- For strong scaling to hundreds of cores *per node* and reduced memory resources *per core*, we may need alternatives
 - many-core subdomain solver for stand-alone, for integration in outer DD method, or perhaps for extension to SPMD weak scaling
 - need not have lowest flops, but should exploit SIMD styles to have low energy and/or execution time

Overview

- Proposed method presented from an algebraic perspective, but its effectiveness is tied to the same principles as solvers and preconditioners based on domain decomposition
 - parallel performance from divide-and-conquer to create suitable subproblems
 - although typically by recursion, rather than by *a priori* partitioning
 - convergence from the decay properties of elliptic Green's functions
 - although typical tools are related to rank reduction rather than condition number bounds
- Low-rank ideas have not been prominent in our DD meetings
 - however, they are rapidly penetrating the linear algebra mainstream
- Can compete directly with subspace projection methods in certain niches (Helmholtz, high contrast)
- Can plug in to subspace projection methods as component
- Tunable on spectrum between direct and iterative

Key tool: hierarchical matrices

- [Hackbusch, 1999] : off-diagonal blocks of typical differential and integral operators have low effective rank
- By exploiting low rank, k, memory requirements and operation counts approach optimal in matrix dimension n
 - **—** polynomial in *k*
 - lin-log in n
 - constants carry the day
- Such hierarchical representations navigate a compromise
 - fewer blocks of larger rank ("weak admissibility") or
 - more blocks of smaller rank ("strong admissibility")

Example: 1D Laplacian

"Standard(strong)" vs. "weak" admissibility

After [Hackbusch, et al., 2003]

Graphical idiom for hierarchical structure

more general system

Key idea

- When dense blocks arise in "routine" matrix operations, replace them with hierarchical representations

 e.g., the Schur complements in nested dissection
- Use high accuracy (high rank, but typically less than full) to build "exact" solvers
- Use low accuracy (low rank) to build preconditioners

Hierarchical matrix algorithm flavors

• [Hackbusch, 1999] : H-matrices

- [Hackbusch & Khoromskij, 2000] : H²-matrices
- [Li et al., 2009] : hierarchically semi-separable matrices (HSS)
- [Ho, et al., 2012] : recursive skeletonization
- [Darve *et al.*, 2013] : hierarchical off-diagonal low-rank matrices (HODLR)
- [Yokota *et al.*, 2014] : algebraic fast multipole

Hierarchical matrix software

Nested dissection, multifrontal, etc.

- [Kriemann, *et al.*] : HLib
- [Li, et al.] : STRUMPACK
- [Darve, *et al.*] : HODLR
- [Poulson, *et al.*] : **DMHM**
- [Amestoy, *et al.*] : MUMPS

Hierarchical structure

H² hierarchical structure

Recursive construction of nested bases

Data structure components:

- dense blocks from original matrix
- diagonal blocks of low-rank matrices
- column bases and row bases for low-rank matrices
- maps between bases of different scales

Two-stage compression procedure

Accuracy and complexity with rank

Representation Complexity

Inversion Complexity

Cyclic reduction

- "One of the most versatile and powerful methods ever created" – Golub
- Originally proposed for tridiagonal systems
- Based on two properties, preserved upon recursion
 - tridiagonal systems can be even-odd permuted to eliminate half of the unknowns
 - the Schur complement of a tridiagonal is still a tridiagonal
- In 2D and higher, called "block cyclic reduction"
- Though outer tridiagonal structure is preserved, solution of the inner solver governs the complexity
- For constant coefficients, FFTs can be used for $O(N \log N)$
- Otherwise, CR is a non-optimal form of Gauss elimination

Cyclic reduction complementary to nested dissection

1D mesh

First step of cyclic reduction

Preservation of tridiagonal structure on Schur complementation

Preservation of tridiagonal structure on permuted Schur complementation

Block structure in 2D

- Issue: diagonal block inversion is non-optimal when FFT does not apply
- Enter hierarchical matrix arithmetic
 - how will rank grow?

Block recursive application

Pseudocode

Algorithm 1 Accelerated Cyclic Reduction (ACR)

- 1: $n = 2^q, q \ge 2$
- 2: Block-wise low-rank approximation of A: $H^{(0)} = A$
- 3: Set-up right-hand side f
- 4: for *i* =1 to *q* do
- 5: $H^{(i)} = PAP^T$
- 6: $H^{(i+1)} = H^{(i)}_{22} \ominus H^{(i)}_{21} \otimes \mathcal{H}$ inverse $(H^{(i)}_{11}) \otimes H^{(i)}_{12}$

7:
$$f^{(i+1)} = b_{odd} - H^{(i)}_{21} \otimes \mathcal{H}inverse(H^{(i)}_{11}) \otimes b_{even}$$

- 8: $u_{odd} = \mathcal{H}inverse(H_{11}^{(i+1)})f^{(i+1)}$
- 9: end for
- 10: Perform back-substitution
- 11: Permute solution vector back to natural ordering

Numerical experiments

Second-order finite difference discretization with homogeneous BCs on the unit square

$$-\nabla\cdot\kappa(\vec{x})\nabla u = f(\vec{x})$$

$$A = \mathsf{tridiag}(E_i, D_i, F_i) = \begin{bmatrix} D_1 & F_1 \\ E_2 & D_2 & F_2 \\ & \ddots & \ddots & \ddots \\ & & E_{n-1} & D_{n-1} & F_{n-1} \\ & & & E_n & D_n \end{bmatrix}$$

Numerical experiments

Six 2D experiments comparing ACR with H-LU and AMG

- Same forcing function

and homogeneous boundary conditions:

$$f(\mathbf{x}) = 100e^{-100((x-0.5)^2 + (y-0.5)^2)}$$

- Both codes

attempt a **direct solution** relative to the discretization error, using rank truncation:

$$\left| \left| u - \hat{u^{h}} \right| \right|_{2} \sim \frac{||Ax - b||_{2}}{||b||_{2}}$$

Both codes are

compiled with **icc15** and **O2** optimization enabled. In the same computer system.

- Benchmark is against the \mathcal{H} -LU multi-core implementation of **HLIBPro** by R. Kriemann et al.

Hardware architecture

Metric	Westmere Xeon X5650	Ivy Bridge Xeon E5-2680 v2	Haswell Xeon E5-2699 v3	AMD Opteron 6376
Cores	12	20	36	64
Clock frequency (GHz)	2.66	2.9	2.3	2.6
L3 Total size (KB)	12,288	25,600	46,080	12,288
Cache/core (KB)	1,024	1,280	1,280	192
Bandwith (GB/s)	23.3	57.7	94.46	45.8

Truncation error algebraic convergence tuning and log-lin complexity growth 1 core of Westmere

	$-\nabla^2 u = f(\mathbf{x}).$	$\mathbf{x} \in \Omega = $	$[0,1]^2 u(\mathbf{x})=0,$	$x \in \Gamma$
$h=n^{-1}$		$f(\mathbf{x}) = 100e^{-100((x-0.5)^2 + (y-0.5)^2)}$		
$N=n^2$		$\sim h^2$	$\sim N \log N$	$\sim N \log^2 N$
n	ACR_{ϵ}	Error	Memory (Bytes)	Time (sec)
64	1.0×10^{-5}	1.39×10^{-4}	5.07×10^{6}	0.12
128	5.2×10^{-6}	1.74×10^{-5}	5.50×10^{7}	0.37
256	1.0×10^{-7}	3.30×10^{-6}	2.26×10^{8}	1.94
512	4.0×10^{-9}	7.59×10^{-7}	9.27×10^{8}	8.93
1,024	1.0×10^{-10}	1.34×10^{-7}	3.82×10^{9}	45.79
2,048	1.0×10^{-11}	2.77×10^{-8}	1.57×10^{10}	228.62

Poisson

1 core of Westmere

Poisson Memory consumption

Convection-diffusion [Gillman, 2011] 12 cores of Westmere

High contrast diffusivity [Ewing et al, 2001] 12 cores of Westmere

Helmholtz, increasing k

12 cores of Westmere

ACR

n	k	Error	Memory (Bytes)	Time (sec)
1,024	1	$2.41 imes 10^{-6}$	$3.81 imes 10^9$	8.22
1,024	25	$3.30 imes10^{-6}$	$3.81 imes10^9$	8.32
1,024	50	$1.96 imes 10^{-6}$	$3.81 imes10^9$	8.38
1,024	100	4.14×10^{-6}	$3.83 imes10^9$	8.62

H-LU

n	k	Error	Memory (Bytes)	Time (sec)
1,024	1	$8.26 imes 10^{-6}$	$1.07 imes 10^9$	14.35
1,024	25	$5.10 imes 10^{-6}$	$1.04 imes 10^9$	14.48
1,024	50	$9.12 imes10^{-6}$	$1.03 imes10^9$	14.04
1,024	100	1.41×10^{-6}	1.04×10^9	14.52

Helmholtz, fixed kh

12 cores of Westmere

ACR

n	k	Error	Memory (Bytes)	Time (sec)
64	5	$5.72 imes 10^{-6}$	$5.12 imes 10^6$	0.09
128	10	$7.41 imes 10^{-6}$	$2.21 imes 10^7$	0.33
256	20	4.71×10^{-6}	$9.53 imes10^7$	1.07
512	40	$7.24 imes 10^{-6}$	$4.04 imes 10^8$	3.67
1,024	80	$7.87 imes 10^{-6}$	$1.72 imes 10^9$	14.37
H-LU				
n	k	Error	Memory (Bytes)	Time (sec)
64	5	$7.80 imes 10^{-6}$	$3.64 imes10^6$	0.08
128	10	$4.03 imes 10^{-6}$	$1.57 imes 10^7$	0.21
256	20	$4.12 imes 10^{-6}$	$6.20 imes10^7$	0.94
512	40	$7.42 imes 10^{-6}$	$2.56 imes10^8$	3.88
1,024	80	$9.12 imes 10^{-6}$	$1.04 imes 10^9$	14.61

Near linear complexity in problem size

Time vs. log-stage for different core counts

- Working ranks vary from 1 (first stage, diagonal) up to 10 for later stages
- Blocks per stage decrease by 2

Multicore strong scaling

Speedup of ACR/H-LU vs. native H-LU

TLB miss comparisons

DD23 | Jeju | 8 July 2015

TLB miss comparisons

DD23 | Jeju | 8 July 2015

Comments

- ACR is not in competition with other hierarchical matrix libraries
 - algorithmic outer wrapper
 - may unlock additional exploitable structure for concurrency and reuse
- Internal H arithmetic engine is modular
 - here, HLibPro[®]
 - ride emerging software for each emerging hardware environment

3D problems

- For natural ordering and weak admissibility, the higher incompressible ranks of off-diagonal blocks make ACR suboptimal as a direct solver
- Strong admissibility recovers the formally optimal complexity, but the constant makes it noncompetitive

Numerical experiment on high-contrast problem

$$\kappa = D_1 \times D_2 \times D_3$$
$$D_1 = \begin{cases} 10^{-2} & 0 < x \le 0.5\\ 10^3 & 0.5 \le x < 1 \end{cases}$$
$$D_2 = \begin{cases} 1 & 0 < y \le 0.5\\ 10 & 0.5 \le y < 1 \end{cases}$$
$$D_3 = \begin{cases} 10^4 & 0 < z \le 0.5\\ 1 & 0.5 \le z < 1 \end{cases}$$

Radically truncated-rank ACR as preconditioner for 3D

Comparing set up and iteration time for H-LU, ACR, and AMG in 3D

Future work

- arXiv preprint forthcoming
- Adopt directed acyclic graph (DAG)-based approach to scheduling the block-sized tasks
 - already tested for H-LU in research codes for GPUs [Kriemann, 2014]
 - reduce synchronization idleness
 - allow more load-balancing across multiple grain sizes

Hierarchical Computations on Many-core Architectures (HiCMA)

Thank you!