From Surface Equivalence Principle to Modular Domain Decomposition

Florian Muth* Hermann Schneider*

* PhD students

Motivation I

- Challenge: complex/large models
 - Multiple scales
 - Different electromagnetic properties
 - Full set of *MAXWELL*'s equations

 $\nabla \times \vec{E} = -j\omega \vec{B}$ $\nabla \times \vec{H} = j\omega \vec{D} + \vec{J}$ $\nabla \cdot \vec{D} = \rho$ $\nabla \cdot \vec{B} = 0$

Motivation II

- Approach: domain decomposition
 - Tightly coupled subdomains, full system solve necessary
 → global iterative solver
 - Couple existing solvers → modular, black box framework
 → arbitrary solvers
 - Coupling via surface currents
 - Integration in commercial software

Outline

- Motivation
- Surface Equivalence Principle
- Iterative Domain Decomposition
- First Results
- Conclusion and Outlook

Surface Equivalence Principle I

• Sources and materials enclosed by surface S can be replaced by equivalent surface currents \vec{J}_s and \vec{M}_s :

Full model

Equivalent model for outer domain

Surface Equivalence Principle I

• Sources and materials enclosed by surface S can be replaced by equivalent surface currents \vec{J}_s and \vec{M}_s :

Full model

Equivalent model for inner domain

Surface Equivalence Principle I

• Sources and materials enclosed by surface S can be replaced by equivalent surface currents \vec{J}_s and \vec{M}_s :

Surface Equivalence Principle II

- Will be utilized for black box DD approach
 - Coupling of subdomains via surface currents
 - Subdomains need to provide surface currents only
 - Resulting in an iterative DD method

Outline

- Motivation
- Surface Equivalence Principle
- Iterative Domain Decomposition
- First Results
- Conclusion and Outlook

Iterative Domain Decomposition Typical Coupled System

Iterative Domain Decomposition Coupled System + Surface Equivalence Principle

Iterative Domain Decomposition Equivalence Principle Motivated Approach

Resulting system solved for surface quantities \bar{x}_1 and \bar{x}_2 , e.g. by fixpoint iteration or accelerated by GMRES

Outline

- Motivation
- Surface Equivalence Principle
- Iterative Domain Decomposition
- First Results
- Conclusion and Outlook

First Results

- Area of application of this project
 - Small number of user-defined, coupled subdomains
 - Priority not on scalability, but flexibility
 - E.g. antenna placement
- Model: 1x2 patch antenna array
 - Academic example
 - For investigation purposes

First Results Setup

- FEM-FEM coupling
- Non-overlapping subdomains
- Absorbing Boundary Condition
- Broadside radiation
- Non-conforming mesh at interface

First Results E-Field on 1D-Curve

First Results GMRES Residual Convergence

Rel. Residual (1x2 broadside)

→ DD: FEM-FEM non-overlapping

Norm based on physical quantities

- Independent of basis functions
- Support of different types of electromagnetic solvers

First Results S-Parameter Convergence

- Residual in surface quantities \leftrightarrow errors in quantities of interest?
- Abs. error $< 10^{-3}$ sufficient for typical engineering applications
 - → Rel. residual < $4 \cdot 10^{-2}$ already enough!?

First Results Overlap Parameter Study I

- DD approach features high flexibility in defining coupling surfaces
- Overlaps can be easily introduced

First Results Overlap Parameter Study II

Rel. Residual (1x2 broadside)

- Major improvement in convergence
- No significant performance drawback!
- One mesh cell layer overlap: $d = 4 \cdot 10^{-2} \lambda$

Outline

- Motivation
- Surface Equivalence Principle
- Iterative Domain Decomposition
- First Results
- Conclusion and Outlook

Conclusion

- DD approach suitable for large and complex setups
- Modular, black box framework \rightarrow arbitrary solvers
- Equivalence principle motivated coupling via surface currents
- High flexibility in defining coupling surfaces
- Promising first results, accelerated convergence due to introduced overlap

Outlook

- Proper definition of the norm
- Residual ↔ errors in the quantities of interest
- Dependency of convergence on coupling strength of subdomains
- Treatment of cross-points

Thank You For Your Attention!

Any Questions?