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The LOtka—VO|terra Equatlons Integration and
Parareal
Lotka Volterra System of differential equations with predator Martin J. Gander
y and prey x!
)'( — X _ Xy — _X}/(?)_Hv X(O) — )/%’ Lotka-Volterra
. _ o o 8_ 0 A
y = -y + xx = xgo y(0)=7.

with the function H(x,y) = x+y —Inx — Iny. The exact
solution is thus a cycle, and is known in closed form.?

Discretization by Forward Euler:

X — X ~
%En - Xn — Xn¥n X0 =X,
Ynd = =~y + Xy W=

Alfred J. Lotka, Elements of Physical Biology (1925), and Vito
Volterra, Variazioni e fluttuazioni del numero d'individui in specie
animali conviventi (1927)

2A. Steiner and M. Arrigoni, “Die Lésung gewisser
Rauber-Beute-Systeme”, Studia Biophysica wol. 123 (1988) No. 2:



Forward Euler Solution (exact

solution dashed)
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A Geometric Method for Lotka Volterra Integration and

Parareal

Using a small modification3 Martin J. Gander

Xpn+1 — X, ] R
n+At : Xn  — XnYn ;X0 = X,

yn+1 e _yn _ _ . S Poisson Integrator
At - Yn + Xnxi¥n 1 Yo=Y,

leads to a physically correct so called Poisson Integrator.

Geometric Numerical Integration, Hairer, Lubich,
Wanner, Springer Verlag, 2002:

“The subject of this book is numerical methods that preserve geometric
properties of the flow of a differential equation: symplectic integrators
for Hamiltonian systems, symmetric integrators for reversible systems,
methods preserving first integrals and numerical methods on manifolds,
including Lie group methods and integrators for constrained mechanical
systems, and methods for problems with highly oscillatory solutions.”

3A Non Spiraling Integrator for the Lotka Volterra Equation, G., Il
Volterriano No. 4, pp. 21-28, Liceo Cantonale e Biblioteca Cantonale
di Mendrisio, 1994.



Poisson Integrator for Lotka Volterra inegration and
g
Parareal
25 Martin J. Gander
2+ 4 Poisson Integrator
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Preservation of the Hamiltonian Inegration and
Parareal
y « corrector Step Martin J. Gander

% (Xn—i-la }/n—l—l)
Euler predictor step

Energy Conservation

% (Xn, ¥n)

Level set of H(x,y)

oH
X = x 97X,y
Xn1+ a5=(X,Y)

OH
Y = vy, XY
)/+1+068y( )

For the new approximation (X, Y), determine « such that
H(X(Xn+17 Yn+1; At7 Oé), Y(Xn+1> Yn+1, At7 Oé)) = H(Xm yn)

(could also evaluate gradient at x,11, Ynt1)
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Positivity
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However: Tupper (2005): A test problem for molecular
dynamics integration: “The computed covariance function is
clearly not converging to C as n — 0"
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Positivity as a Geometric Property i e

Parareal
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Positivity

u

On the Positivity of Poisson Integrators for the
Lotka-Volterra Equations, M. Beck and M.J. Gander, BIT
Numerical Mathematics, Vol. 55, No. 2, pp. 319-340, 2015.



The Parareal Algorithm Integration and

Parareal
J-L. Lions, Y. Maday, G. Turinici (2001): A “Parareal’ Martin J: Gander
in Time Discretization of PDEs
The parareal algorithm for the model problem
UI = f(u) Parareal

is defined using two propagation operators:

1. G(tp,t1,u1) is a rough approximation to u(tp) with
initial condition u(t1) = vy,

2. F(t,t1,u1) is a more accurate approximation of the
solution u(tp) with initial condition u(t;) = u.

Starting with a coarse approximation U9 at the time points
ti, ta, ..., ty, parareal performs for k =0,1,... the
correction iteration

Urljj-_ll = G(t"+17 th, Url1(+1)+F(t"+17 th, Urlw()_G(tn-i-h th, Url;)



Geometric Parareal Algorithms 7

» Bal and Wu (DD17, 2008): Symplectic Parareal.
Non-iterative: “the two-step IPC scheme can be arbitrarily
accurate”

» Audouze, Massot, Volz (2009): Symplectic
multi-time step parareal algorithms applied to molecular
dynamics. "We also prove the symplecticity of this method,
which is an expected behavior of the molecular dynamics
integrators”

» Jiménez-Pérez, Laskar (2011): A time-parallel
algorithm for almost integrable Hamiltonian systems.
“In this paper we propose a refinement of the SST97
algorithm to accelerate the solution and to preserve the
accuracy of the sequential integrator”

» Dai, Le Bris, Legoll, Maday (2013): Symmetric
parareal algorithms for Hamiltonian systems. “Using a
symmetrization procedure and/or a projection step, we
introduce here several variants of the original plain parareal in
time algorithm”
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Harmonic Oscillator i
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H(p,q) =
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Stormer-Verlet for AT = 0.1 and AT = 0.01:
Theorem (G, Hairer 2014)

For the harmonic oscillator with G of order €, convergence
can be achieved on a time window of length O(e71).



Kepler Problem (Completely Integrable)

1

H(p,q) = = (pf + P3) —

N

106
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Simulations for AT =0.1 and AT = 0.01:
Theorem (G, Hairer 2014)

For integrable systems with G of order €, convergence can
be achieved on a time window of length O(s~1/2).
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Hénon-Heiles Equation (Chaotic)

1
H(p.q) = 5(p5+p§)+U(q1,qz)

1 1
U(qi, q2) = 5(67% +¢3)+qq — 3 @
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Simulations for AT = 0.01 and AT = 0.001:
Theorem (G, Hairer 2014)

For general systems with G of order e, convergence can be
achieved only on a time window of length O(1).
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Derivative Parareal Algorithm

One step back in the derivation of parareal to avoid
cancellation: G(UK*1) — G(UK) = G'(UK)(UK — Uk—1).

10°E Kepler problem, AT =0.1
10*E ¥
-
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10°E Kepler problem, AT =0.1
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» Fine integrator quadruple precision implementation of
Gauss-Runge-Kutta method of order 12

» Coarse integrator 21 steps of Stormer-Verlet (top) and
Gauss-Runge-Kutta of order 8 (below), both double
precision
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- Geometric
COﬁClUSlonS Integration and
Parareal

> The parareal algorithm can not preserve symplectic Martin J. Gander
properties of ngT and gogT

» Nevertheless the parareal algorithm can benefit from the
symplectic structure in certain cases (e.g. completely
integrable systems)

> It is really the coarse integrator that is key for
performance

Conclusions

Analysis for parareal algorithms applied to Hamiltonian
differential equations, M.J. Gander and E. Hairer, Journal of
Computational and Applied Mathematics, 259, pp. 1-13, 2014.
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» Nevertheless the parareal algorithm can benefit from the
symplectic structure in certain cases (e.g. completely
integrable systems)
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Conclusions

Analysis for parareal algorithms applied to Hamiltonian
differential equations, M.J. Gander and E. Hairer, Journal of
Computational and Applied Mathematics, 259, pp. 1-13, 2014.

» There are however many other time parallel methods:

50 Years of Time Parallel Time Integration, G., to appear in
"Multiple Shooting and Time Domain Decomposition’, T. Carraro,
M. Geiger, S. Korkel, R. Rannacher, editors, Springer Verlag, 2015.
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