Nonlinear Preconditioning

Martin J. Gander

Linear

reconditioning

Stationar

Preconditioning

intuition

Droconditionin

Preconditioning

ASPIN

Example

Constructi

Schwarz

2 Level RASPE

Experiments

Summary

Linear and Non-Linear Preconditioning

Martin J. Gander martin.gander@unige.ch

University of Geneva

July 2015

Joint work with Victorita Dolean, Walid Kheriji, Felix Kwok and Roland Masson

Nonlinear

Preconditioning

Systematic Construction Schwarz

1 Level RASPEN 2 Level RASPEN

Experiments

Summary

Als ein Beispiel möge hier die Anwendung der Methode auf die in der Theoria motus p. 219 gegebenen Gleichungen dienen. Die ursprünglichen Gleichungen sind

$$27 p + 6 q + *r - 88 = 0$$

$$6 p + 15 q + r - 70 = 0$$

$$*p + q + 54 r - 107 = 0.$$

Schafft man den Coefficienten 6 bei q in der ersten Gleichung fort, so wird $\alpha = 22^{\circ}30'$

$$p = 0.92390 y + 0.38268 y'$$

$$q = 0.38268 y - 0.92390 y'$$

und die neuen Gleichungen werden

After preconditioning, it takes only three Jacobi iterations to obtain three accurate digits!

$$A\mathbf{u} = \mathbf{f},$$

one needs a splitting of A = M - N and then iterates

$$M\mathbf{u}^{n+1} = N\mathbf{u}^n + \mathbf{f}$$

Examples

- ▶ Jacobi: M = diag(A)
- Gauss-Seidel: M = tril(A)
- Schwarz domain decomposition: M block diagonal
- ▶ Multigrid: *M* represents a V-cycle or W-cycle

The iterative method

$$\mathbf{u}^{n+1} = M^{-1}N\mathbf{u}^n + M^{-1}\mathbf{f} = (I - M^{-1}A)\mathbf{u}^n + M^{-1}\mathbf{f}$$

- 1. converges fast if $\rho(I M^{-1}A)$ is small.
- 2. and is cheap, if systems with \boldsymbol{M} can easily be solved

Martin J. Gander

Linear

I---L:

Stationary

Preconditioning

lonlinear Preconditioning

SPIN

ystematic onstruction

1 Level RASPEN

Z Level RASPEI

Invention of the Conjugate Gradient Method

Stiefel and Rosser 1951: Presentations at a Symposium at the National Bureau of Standards (UCLA)

Hestenes 1951: Iterative methods for solving linear equations

Stiefel 1952: Über einige Methoden der Relaxationsrechnung

Hestenes and Stiefel 1952: Methods of Conjugate Gradients for Solving Linear Systems

"An iterative algorithm is given for solving a system Ax = k of n linear equations in n unknowns. The solution is given in n steps."

Lanczos 1952: Solution of systems of linear equations by minimized iterations (see also 1950)

Nonlinear Preconditioning

Martin J. Gander

Linea

Jacobi

Krylov

Preconditioning ntuition

Nonlinear Preconditioning

Preconditioning ASPIN

Example Systematic Construction

1 Level RASPEN

Experiments

Summan

Preconditioning

The Conjugate Gradient Method

To solve approximately $A\mathbf{u} = \mathbf{f}$, A spd, CG finds at step n using the Krylov space

$$\mathcal{K}_n(A, \mathbf{r}^0) := \{\mathbf{r}^0, A\mathbf{r}^0, \dots, A^{n-1}\mathbf{r}^0\}, \quad \mathbf{r}^0 := \mathbf{f} - A\mathbf{u}^0$$

an approximate solution $\mathbf{u}^n \in \mathbf{u}^0 + \mathcal{K}_n(A, \mathbf{r}^0)$ which satisfies

$$||\mathbf{u} - \mathbf{u}^n||_A \longrightarrow \min.$$

Theorem

With $\kappa(A)$ the condition number of A,

$$||\mathbf{u} - \mathbf{u}^n||_{\mathcal{A}} \leq 2 \left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1} \right)^n ||\mathbf{u} - \mathbf{u}^0||_{\mathcal{A}}.$$

The conjugate gradient method converges very fast, if the condition number $\kappa(A)$ is not large.

is easier to solve with a Krylov method. Two goals:

- 1. For CG: make $\kappa(M^{-1}A)$ much smaller than $\kappa(A)$ More generally: cluster spectrum of $M^{-1}A$ close to one
- 2. It should be inexpensive to apply M^{-1}

For stationary iterative methods, we needed M such that

- 1. the spectral radius $\rho(I M^{-1}A)$ is small
- 2. it should be inexpensive to apply M^{-1}

Note that

 $\rho(I - M^{-1}A)$ small \iff spectrum of $M^{-1}A$ close to one

Idea: design a good M for a stationary iterative method, and then use it as a preconditioner for a Krylov method.

Intuition

ASPIN

Additive Schwarz Preconditioned Inexact Newton (ASPIN): Cai, Keyes and Young DD13 (2001), Cai and Keyes SISC (2002)

"The nonlinear system is transformed into a new nonlinear system, which has the same solution as the original system. For certain applications the nonlinearities of the new function are more balanced and, as a result, the inexact Newton method converges more rapidly."

Instead of solving $F(\mathbf{u}) = \mathbf{0}$, solve instead $G(F(\mathbf{u})) = \mathbf{0}$ with

- ▶ If $G(\mathbf{v}) = \mathbf{0}$ then $\mathbf{v} = \mathbf{0}$
- $G \approx F^{-1}$ in some sense
- \triangleright $G(F(\mathbf{v}))$ is easy to compute
- ▶ Applying Newton, $(G(F(\mathbf{v})))'\mathbf{w}$ should also be easy to compute

An example of non-linear preconditioning

Additive Schwarz Preconditioned Inexact Newton (ASPIN): Cai, Keyes and Young DD13 (2001), Cai and Keyes SISC (2002)

"The nonlinear system is transformed into a new nonlinear system, which has the same solution as the original system. For certain applications the nonlinearities of the new function are more balanced and, as a result, the inexact Newton method converges more rapidly."

Instead of solving $F(\mathbf{u}) = \mathbf{0}$, solve instead $G(F(\mathbf{u})) = \mathbf{0}$ with

- ▶ If $G(\mathbf{v}) = \mathbf{0}$ then $\mathbf{v} = \mathbf{0}$
- ▶ $G \approx F^{-1}$ in some sense
- $ightharpoonup G(F(\mathbf{v}))$ is easy to compute
- Applying Newton, $(G(F(\mathbf{v})))'\mathbf{w}$ should also be easy to compute

ASPIN:
$$\mathcal{F}_2(u) = R_0^T C_0^A(u) + \sum_{i=1}^I R_i^T G_i(u) - u = 0,$$

 $F_0(C_0^A(u) + u_0^*) = -R_0 F(u), F_0(u_0^*) = 0$

Martin J. Gander

Linear Preconditioning

Jacobi

Krylov Preconditioning

Nonlinear Preconditioning

ASPIN Example

Systematic Construction Schwarz L Level RASPEN

Level RASPE experiments

Summary

Driven cavity flow problem (Cai, Keyes 2002)

Martin J. Gander

Linear Preconditioning

> Jacobi Stationary

Preconditioning ntuition

Nonlinear Preconditioning

Example Example

Systematic Construction Schwarz 1 Level RASPI

Level RASPEN

ummarv

Driven cavity flow problem (Cai, Keyes 2002)

Nonlinear Preconditioners: Systematic Construction

Recall from the linear case: from a stationary iterative method for $A\mathbf{u} = \mathbf{f}$,

$$\mathbf{u}^{n+1} = (I - M^{-1}A)\mathbf{u}^n + M^{-1}\mathbf{f}$$

with fast convergence, i.e. $\rho(I-M^{-1}A)$ small, we obtain a good preconditioner M to solve

$$M^{-1}A\mathbf{u} = M^{-1}\mathbf{f}$$

with a Krylov method.

Idea: For the non-linear problem $F(\mathbf{u}) = 0$, construct a fixed point iteration

$$\mathbf{u}^{n+1} = \mathcal{G}(\mathbf{u}^n)$$

and then solve

$$\mathcal{F}(\mathbf{u}) := \mathcal{G}(\mathbf{u}) - \mathbf{u} = 0$$

using Newton's method.

Martin J. Gander

Linear Preconditionin

Jacobi

Krylov Preconditionii

onlinear

reconditioning SPIN

Systematic Construction

1 Level RASPEN

Level RASPEN xperiments

One dimensional non-linear model problem

$$\mathcal{L}(u) := -\partial_x ((1 + u^2)\partial_x u) = f, \text{ in } \Omega := (0, L),$$

 $u(0) = 0,$
 $u(L) = 0,$

Parallel Schwarz method with two subdomains $\Omega_1 := (0, \beta)$ and $\Omega_2 := (\alpha, L)$, $\alpha < \beta$

$$\mathcal{L}(u_1^n) = f,$$
 in $\Omega_1 := (0, \beta),$
 $u_1^n(0) = 0,$
 $u_1^n(\beta) = u_2^{n-1}(\beta),$
 $\mathcal{L}(u_2^n) = f,$ in $\Omega_2 := (\alpha, L),$
 $u_2^n(\alpha) = u_1^{n-1}(\alpha),$
 $u_2^n(L) = 0.$

This is a non-linear fixed point iteration.

How can we apply Newton to solve at the fixed point?

· ロ > 4 周 > 4 国 > 4 国 > 国 のQ (~)

Martin J. Gander

Linear

Preconditioning

Stationary

Preconditio

Jonlinear

Preconditioning

SPIN

ystematic onstruction

Schwarz

1 Level RASPEN 2 Level RASPEN

xperiments

bummary

$$u^{n}(x) := \begin{cases} u_{1}^{n}(x) & \text{if } 0 \leq x < \frac{\alpha + \beta}{2}, \\ u_{2}^{n}(x) & \text{if } \frac{\alpha + \beta}{2} \leq x \leq L, \end{cases}$$

or with zero extension operators \tilde{R}_{i}^{T}

$$u^n = \tilde{R}_1^T u_1^n + \tilde{P}_2^T u_2^n.$$

With the solution operators for the non-linear subdomain problems

$$u_1^n = G_1(u^{n-1}), \qquad u_2^n = G_2(u^{n-1}),$$

we obtain (for I subdomains)

$$u^{n} = \sum_{i=1}^{l} \tilde{R}_{i}^{T} G_{i}(u^{n-1}) =: \mathcal{G}_{1}(u^{n-1}).$$

RASPEN: Solve the fixed point equation with Newton

$$\tilde{\mathcal{F}}_1(u) := \mathcal{G}_1(u) - u = \sum_{i=1}^I \tilde{R}_i^T G_i(u) - u = 0$$

Preconditioning

Martin J. Gander

1 Level RASPEN

1 Level RASPEN

$$eta>0,\ 0<\lambda_{min}\leq \lambda(x)\leq \lambda_{max},\ q(g)=\mathrm{sgn}(g)rac{-1+\sqrt{1+4eta|g|}}{2eta}$$

Residual as a function of iterations for 8 subdomains

Nonlinear Schwarz

Intuition

Nonlinear Preconditioning

ASPIN

Systematic Construction

chwarz Level RASPE

2 Level RASPEN

xperiments

Summar

Adding a Coarse Grid Correction

Use the Full Approximation Scheme (FAS) from multigrid: compute correction \boldsymbol{c} from a non-linear coarse problem

$$\mathcal{L}^{c}(R_{0}u^{n-1}+c)=\mathcal{L}^{c}(R_{0}u^{n-1})+R_{0}(f-\mathcal{L}(u^{n-1})),$$

Add the correction $c := C_0(u^{n-1})$ to the iterate

$$u_{new}^{n-1} = u^{n-1} + R_0^T C_0(u^{n-1}),$$

This gives naturally the two level fixed point iteration

$$u^{n} = \sum_{i=1}^{I} \tilde{R}_{i}^{T} G_{i}(u^{n-1} + R_{0}^{T} C_{0}(u^{n-1})) =: \mathcal{G}_{2}(u^{n-1}),$$

Two level RASPEN means solving with Newton

$$\tilde{\mathcal{F}}_2(u) := \mathcal{G}_2(u) - u = \sum_{i=1}^I \tilde{R}_i^T G_i(u + R_0^T C_0(u)) - u = 0.$$

Comparison of ASPIN and RASPEN

One Level Variants:

RASPEN :
$$\tilde{\mathcal{F}}_{1}(u) := \sum_{i=1}^{I} \tilde{R}_{i}^{T} G_{i}(u) - u = 0$$

ASPIN : $\mathcal{F}_{1}(u) := \sum_{i=1}^{I} R_{i}^{T} G_{i}(u) - u = 0$

Two Level Variants:

RASPEN :
$$\tilde{\mathcal{F}}_{2}(u) := \sum_{i=1}^{I} \tilde{R}_{i}^{T} G_{i}(u + R_{0}^{T} C_{0}(u)) - u = 0$$

ASPIN : $\mathcal{F}_{2}(u) = R_{0}^{T} C_{0}^{A}(u) + \sum_{i=1}^{I} R_{i}^{T} G_{i}(u) - u = 0$,
 $F_{0}(C_{0}^{A}(u) + u_{0}^{*}) = -R_{0}F(u)$, $F_{0}(u_{0}^{*}) = 0$

Three main differences:

- 1. RASPEN does not sum corrections in the overlap like ASPIN, since it is a convergent fixed point method
- 2. RASPEN uses the full approximation scheme for the coarse correction, whereas ASPIN does an additive ad hoc construction
- 3. RASPEN uses exact Newton, since one obtains the exact Jacobian from the inner non-linear solves.

Nonlinear Preconditioning

Martin J. Gander

inear recondition lacobi Stationary Krylov

Nonlinear Preconditioning

SPIN

Construction Schwarz Level RASPEN

2 Level RASPEN Experiments

xperiments

Experiments

А	Non-	Linear	Diffusion	Problem:	One	Level

$$\begin{cases}
-\nabla \cdot ((1+u^2)\nabla u) &= f, \quad \Omega = [0,1]^2 \\
u &= 1, \quad x = 1, \\
\frac{\partial u}{\partial \mathbf{n}} &= 0, \text{ otherwise.}
\end{cases}$$

Results for RASPEN (ASPIN in parentheses)

$N \times N$	n	ls _n	ls _n in	Is _n min	LS_n 1 level
2×2	1	15(20)	3(3)	2(2)	
	2	17(23)	2(2)	2(2)	57(75)
	3	18(26)	1(1)	1(1)	
4 × 4	1	32(37)	2(2)	2(2)	
	2	35(41)	2(2)	1(1)	110(129)
	3	38(46)	1(1)	1(1)	
6 × 6	1	46(54)	2(2)	2(2)	
	2	51(59)	2(2)	1(1)	164(183)
	3	57(65)	1(1)	1(1)	

 ls_n^G : GMRES steps for Jacobian, ls_n^{in} maximium and ls_n^{min} minimum iterations to evaluate ${\cal F}$

Stationary Krylov

lonlinear

Preconditioning

Systematic Construction Schwarz

1 Level RASPEN 2 Level RASPEN Experiments

хрегипене

Summary

=	f,	$\Omega = [0,1]^2$
=	1,	x = 1,
=	0,	otherwise.
	=	= 1,

Results for Two Level RASPEN (Two Level ASPIN)

$N \times N$	n	ls _n ^G	Is _n in	Is _n min	LS_n 2 level
2 × 2	1	13(23)	3(3)	2(2)	
	2	15(26)	2(2)	2(2)	51(83)
	3	17(28)	1(1)	1(1)	
4 × 4	1	18(33)	2(2)	2(2)	
	2	22(39)	2(2)	1(1)	71(123)
	3	26(46)	1(1)	1(1)	
6 × 6	1	18(35)	2(2)	2(2)	
	2	23(42)	2(2)	1(1)	73(133)
	3	27(51)	1(1)	1(1)	

 ls_n^G : GMRES steps for Jacobian, ls_n^{in} maximium and ls_n^{min} minimum iterations to evaluate \mathcal{F}_n

Preconditioning Intuition

Nonlinear Preconditioning

Preconditionin

ystematic

Schwarz

1 Level RASPEN

Experiments

- Linear preconditioning means solve the preconditioned linear system $M^{-1}A\mathbf{u} = M^{-1}\mathbf{f}$ using a Krylov method.
- Non-linear preconditioning means solve the preconditioned non-linear system $G(F(\mathbf{u})) = 0$ using Newton's method.
- It is easy to define non-linear (and linear!)
 preconditioners from a fixed point iteration (e.g.
 Haeberlein, Halpern, Anthony, DD20, talk by Axel
 Klawonn)

- Linear preconditioning means solve the preconditioned linear system $M^{-1}A\mathbf{u} = M^{-1}\mathbf{f}$ using a Krylov method.
- ▶ Non-linear preconditioning means solve the preconditioned non-linear system $G(F(\mathbf{u})) = 0$ using Newton's method.
- ▶ It is easy to define non-linear (and linear!) preconditioners from a fixed point iteration (e.g. Haeberlein, Halpern, Anthony, DD20, talk by Axel Klawonn)
- ▶ But what should a linear or non-linear preconditioner really do? (\Longrightarrow talk by Andy Wathen)

Example of the HSS Preconditioner

imag(1-λ_i)

1.5

1 real(1–λ.)

-0.5

 $imag(1-\lambda_j)$

-0.5

Nonlinear Preconditioning

Martin J. Gander

Stationary Krylov Preconditioning

Nonlinear

Preconditioning

Example Systematic Construction Schwarz

Schwarz 1 Level RASPE 2 Level RASPE

Experiments

Summary

imag(1-λ₋)

-0.5

Optimization of the Hermitian and Skew-Hermitian Splitting Iteration for Saddle-Point Problems, Benzi, G., Golub, BIT Vol. 43, 2003.

1 real(1–λ.) 0.5

1 real(1-λ.)