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Jacobi (1845): First Idea of Preconditioning
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Summary

After preconditioning, it takes only three Jacobi iterations to
obtain three accurate digits!
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Nonlinear

Classical Stationary lterative Methods e
For a linear system Martin J. Gander
Au =f,

one needs a splitting of A= M — N and then iterates

Stationary

Mu"t1 = Nu" + f

Examples
» Jacobi: M = diag(A)
» Gauss-Seidel: M = tril(A)
» Schwarz domain decomposition: M block diagonal

v

Multigrid: M represents a V-cycle or W-cycle
The iterative method

u™ = MTINU 4+ M7 = (1 - M7 A" + M

1. converges fast if p(I — M~1A) is small.

2. and is cheap, if systems with M can easily be solved




Nonlinear

Invention of the Conjugate Gradient Method Preconditioning

Martin J. Gander

Stiefel and Rosser 1951: Presentations
at a Symposium at the National Bureau
of Standards (UCLA)

Hestenes 1951: Iterative methods for K<
solving linear equations

Stiefel 1952: Uber einige Methoden der
Relaxationsrechnung

Hestenes and Stiefel 1952: Methods
of Conjugate Gradients for Solving Linear
Systems

“An iterative algorithm is given for solving
a system Ax = k of n linear equations in n
unknowns. The solution is given in n steps.”
Lanczos 1952: Solution of systems of

linear equations by minimized iterations
(see also 1950)




Nonlinear

The Conjugate Gradient Method e

To solve approximately Au = f, A spd, CG finds at step n Martin J. Gander
using the Krylov space

Kn(Ar0) = {rP AC, ... A1 O =f - Al

an approximate solution u” € u® + (A, r°) which satisfies

|lu—u"[[4 — min.

Theorem
With k(A) the condition number of A,

A—1\"
u—urfla <2 (YA ZIYwop
k(A)+1

The conjugate gradient method converges very fast, if the
condition number k(A) is not large.



Nonlinear

Precondltlonlng the Llnear System Preconditioning
Find a matrix M such that the preconditioned system Martin J. Gander

M 1Au = M~1f

is easier to solve with a Krylov method. Two goals:

1. For CG: make x(M~A) much smaller than x(A) Intuition
More generally: cluster spectrum of M~1A close to one

2. It should be inexpensive to apply M~!

For stationary iterative methods, we needed M such that

1. the spectral radius p(/ — M~1A) is small
2. it should be inexpensive to apply M1

Note that
p(I — M~ A) small <= spectrum of M~1A close to one

Idea: design a good M for a stationary iterative method,
and then use it as a preconditioner for a Krylov method.



Nonlinear

An example of non-linear preconditioning Preconditioning

Additive Schwarz Preconditioned Inexact Newton Martin J. Gander

(ASPIN): Cai, Keyes and Young DD13 (2001), Cai and
Keyes SISC (2002)

“The nonlinear system is transformed into a new nonlinear
system, which has the same solution as the original system.
For certain applications the nonlinearities of the new
function are more balanced and, as a result, the inexact
Newton method converges more rapidly.”

ASPIN

Instead of solving F(u) = 0, solve instead G(F(u)) = 0 with
» If G(v) =0thenv=20
» G~ F~1in some sense
» G(F(v)) is easy to compute

» Applying Newton, (G(F(v)))'w should also be easy to
compute



Nonlinear

An example of non-linear preconditioning Preconditioning

Additive Schwarz Preconditioned Inexact Newton Martin J. Gander

(ASPIN): Cai, Keyes and Young DD13 (2001), Cai and
Keyes SISC (2002)

“The nonlinear system is transformed into a new nonlinear
system, which has the same solution as the original system.
For certain applications the nonlinearities of the new
function are more balanced and, as a result, the inexact
Newton method converges more rapidly.”

ASPIN

Instead of solving F(u) = 0, solve instead G(F(u)) = 0 with
If G(v) =0thenv=0

G ~ F~1 in some sense

v

v

v

G(F(v)) is easy to compute

v

Applying Newton, (G(F(v)))'w should also be easy to
compute

ASPIN: Fa(u) = R Cf\u) + X1, RTGi(u) — u =0,
Fo(C§'(u) + ug) = —RoF (u), Fo(ug) =0



Nonlinear

Example: Newton without preconditioning Preconditioning

Martin J. Gander

Driven cavity flow problem (Cai, Keyes 2002)

10 T T T

Re=1.0e4

Re=1.0e3

Example

Nonlinear residuals

Re=7.69e2
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Newton iterations




Example: Newton with ASPIN preconditioning

Nonlinear residuals

10

10|

-12

Driven cavity flow problem (Cai, Keyes 2002)
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Nonlinear
Preconditioning

Martin J. Gander

Example
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Nonlinear Preconditioners: Systematic Construction ' reconditioning

Recall from the linear case: from a stationary iterative Martin J. Gander
method for Au = f,

™ = (I - M1 A" + M

with fast convergence, i.e. p(/ — M~1A) small, we obtain a
good preconditioner M to solve

M~tAu = M~'f Bample

with a Krylov method.

Idea: For the non-linear problem F(u) = 0, construct a fixed
point iteration

and then solve

using Newton's method.



Using a Nonlinear Schwarz Method

Nonlinear
Preconditioning

Martin J. Gander

One dimensional non-linear model problem

L(u) == —0x((1 + u?)oxu) = f,

in Q= (0, L),
u(0) = 0,
u(l) = 0,

Parallel Schwarz method with two subdomains Q; := (0, )
and Qp = (o, L), a < f

L(ur)
uy (0)
ur(5)
L(u3)
uz (@)
uz(L)

Schwarz

f7 in Q1 = (07/8)7

This is a non-linear fixed point iteration.
How can we apply Newton to solve at the fixed point?



Defining the Fixed Point Equation Preconditoning
Martin J. Gander
nroy uP(x) if0<x< b
u"(x) = " - otf
ug(x) if 5= <x <L,

or with zero extension operators f\’,-T

u" = R uf + Pl uj.
With the solution operators for the non-linear subdomain
problems

Uf = G]_(Un_l), Ug = Gz(u”_l), 1 Level RASPEN

we obtain (for / subdomains)

/
Z nl)_g(nl)'

RASPEN: Solve the f|xed point equation with Newton

Fi(u) = Gi(u —u—ZRGu)—U—O



Example: Forchheimer Equation Preconditoning
Martin J. Gander
(a(=A()u(x))) = f(x) inQ,
u(0) = ug,
u(l) = uP.

B>0,0<Amin < )\(X) < Amax q(g) = sgn(g)_l—i_i \/21;_%

Residual as a function of iterations for 8 subdomains

0

1 Level RASPEN
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Nonlinear Schwarz RASPEN
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Addlng a Coarse Grld Correctlon Preconditioning

Use the Full Approximation Scheme (FAS) from multigrid: Martin J. Gander
compute correction ¢ from a non-linear coarse problem

L(Rou™ +¢) = LY(Rou™ 1) + Ro(f — L(u™1)),
Add the correction ¢ := Co(u""1) to the iterate
it = 0" R Go(u ™),

This gives naturally the two level fixed point iteration

2 Level RASPEN

!
Z nl_i_RT(nl))_g(nl)’
Two level RASPEN means solving with Newton

I
Fo(u) :=Ga(u) —u= Z RTGi(u+ Ry Co(u)) —u=0.



Comparison of ASPIN and RASPEN
One Level Variants:
RASPEN : Fi(u) :=S1_  RTGi(u) —u=0
ASPIN : Fi(u) == 1_ RTGi(u) —u=0

Two Level Variants:
RASPEN : Fo(u) == S1_, RTGi(u+ Ry Co(u)) —u=0
ASPIN : Fo(u) = Ry C{Nu) +X1_, RT Gi(u) —u =0,
Fo(Cg'(u) + ug) = —RoF(u), Fo(ug) =0

Three main differences:

1. RASPEN does not sum corrections in the overlap like
ASPIN, since it is a convergent fixed point method

2. RASPEN uses the full approximation scheme for the
coarse correction, whereas ASPIN does an additive ad
hoc construction

3. RASPEN uses exact Newton, since one obtains the
exact Jacobian from the inner non-linear solves.

Nonlinear
Preconditioning

Martin J. Gander

2 Level RASPEN



logio(Error)
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Nonlinear

A Non-Linear Diffusion Problem: One Level Preconditioning
Martin J. Gander
-V ((1 + UZ)VU) = f, Q= [07 1]27
u = 1, x=1,

0
8_:11 = 0, otherwise.
Results for RASPEN (ASPIN in parentheses)

3

N x N
2% 2

Ismn | LS, 1 level

>
o

57(75)

Experiments

4 x4
110(129)

6x6
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o1
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— [ [ — —
— [ [ — —

3 | 57(65 1(1
Is¢: GMRES steps for Jacobian, /s maximium and /s™i"
minimum iterations to evaluate F
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A Non-Linear Diffusion Problem: Two Level Preconditioning

Martin J. Gander

~V-(1+u?)Vu) = f, Q=]0,1]%
u = 1, x=1,
% 0, otherwise.
Results for Two Level RASPEN (Two Level ASPIN)

NxN|n Is& Is;" | Isp"™ | LSy 2 level
2x2 | 1]13(23) | 3(3) | 2(2)

2| 15(26) | 2(2) | 2(2) 51(83)

3 117(28) | 1(1) | 1(1)
4x4 [17118(33) [ 2(2) | 2(2

2122(39) | 2(2) | 1(1) | 71(123)

3| 26(46) | 1(1) | 1(1)
6x6 | 1]18(35) | 2(2) | 2(2)

2| 23(42) | 2(2) | 1(1) | 73(133)

3| 27(51) | 1(1) | 1(1)

Is¢: GMRES steps for Jacobian, /s maximium and /s

minimum iterations to evaluate F
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S umm a ry Preconditioning

Martin J. Gander

» Linear preconditioning means solve the preconditioned
linear system M~1Au = M~ using a Krylov method.

» Non-linear preconditioning means solve the
preconditioned non-linear system G(F(u)) = 0 using
Newton's method.

» It is easy to define non-linear (and linear!)
preconditioners from a fixed point iteration (e.g.
Haeberlein, Halpern, Anthony, DD20, talk by Axel Summary
Klawonn)



Nonlinear

S umm a ry Preconditioning

Martin J. Gander

» Linear preconditioning means solve the preconditioned
linear system M~1Au = M~ using a Krylov method.

» Non-linear preconditioning means solve the
preconditioned non-linear system G(F(u)) = 0 using
Newton's method.

» It is easy to define non-linear (and linear!)
preconditioners from a fixed point iteration (e.g.
Haeberlein, Halpern, Anthony, DD20, talk by Axel Summary
Klawonn)

» But what should a linear or non-linear preconditioner
really do 7 (= talk by Andy Wathen)



Example of the HSS Preconditioner Precondiioning

Martin J. Gander
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Optimization of the Hermitian and Skew-Hermitian Splitting
Iteration for Saddle-Point Problems, Benzi, G., Golub, BIT
Vol. 43, 2003.
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