Multilevel domain decomposition at extreme scales

S. Badia, A. Martin, J. Principe

Universitat Politècnica de Catalunya & CIMNE

Jeju, July 7th, 2015

3 Multilevel linear solvers

2 Multilevel framework

3 Multilevel linear solvers

4 Conclusions

Current trends of supercomputing

- Transition from today's 10 Petaflop/s supercomputers (SCs)
- ... to exascale systems w/ 1 Exaflop/s expected in 2020
- imes 100 performance based on concurrency (not higher freq)
- Future: Multi-Million-*core* (in broad sense) SCs

Current trends of supercomputing

- Transition from today's 10 Petaflop/s supercomputers (SCs)
- ... to exascale systems w/ 1 Exaflop/s expected in 2020
- imes 100 performance based on concurrency (not higher freq)
- Future: Multi-Million-core (in broad sense) SCs

Weakly scalable solvers

• This talk: One challenge, weakly scalable algorithms

Weak scalability

If we increase X times the number of processors, we can solve an X times larger problem

 Key property to face more complex problems / increase accuracy

Source: Dey et al, 2010

Source: parFE project

Scalable linear solvers (AMG)

- Most scalable solvers for CSE are **parallel AMG** (Trilinos [Lin, Shadid, Tuminaro, ...], Hypre [Falgout, Yang,...],...)
- Hard to scale up to largest SCs today (one million cores, < 10 PFs)
- Problems: large communication/computation ratios at coarser levels, densification coarser problems,...

Multilevel framework

- Propose a highly scalable implementation of Multilevel DD methods (MLBDDC [Mandel et al'08])
- MLDD based on a hierarchy of meshes/functional spaces
- It involves local subdomain problems at all levels (L1, L2, ...)

Motivation I: Develop a multilevel framework suitable for extremely scalable implementations

 Motivation II: Apply the multilevel framework for scalable linear algebra (MLBDDC)

- Motivation I: Develop a multilevel framework suitable for extremely scalable implementations
- Motivation II: Apply the multilevel framework for scalable linear algebra (MLBDDC)

- Motivation I: Develop a multilevel framework suitable for extremely scalable implementations
- Motivation II: Apply the multilevel framework for scalable linear algebra (MLBDDC)

All implementations in FEMPAR (in-house code) to be distributed as open-source SW soon*

* Funded by Proof of Concept Grant 640957 - FEXFEM: On a free open source extreme scale finite element software

1 Motivation

2 Multilevel framework

3 Multilevel linear solvers

4 Conclusions

Premilinaries

• Element-based (non-overlapping DD) distribution (+ limited ghost info)

- Gluing info based on objects
 - **Object:** Maximum set of interface nodes that belong to the same set of subdomains

Premilinaries

• Element-based (non-overlapping DD) distribution (+ limited ghost info)

- Gluing info based on objects
 - **Object:** Maximum set of interface nodes that belong to the same set of subdomains

Automatic hierarchical mesh generator

Classification of objects (vef's at the next level) in 3D

- Faces: Objects that belong to 2 subdomains
- Edges: Objects that belong to more than 2 subdomains
- Corners: Edges and faces with cardinality 1

Coarser triangulation

- Similar to FE triangulation object but wo/ reference element
- Instead, aggregation info

object level 1 = aggregation (vef's level 0)

Coarser FE space

- On top of coarser triangulation, we create a FE-like functional space
- DOFs on geometrical objects at the coarser level (as in FEs)
- Aggregation info for DOFs $(u_1^lpha=\mathcal{F}_lpha(u_1))$

Coarser FE space

- On top of coarser triangulation, we create a FE-like functional space
- DOFs on geometrical objects at the coarser level (as in FEs)
- Aggregation info for DOFs $(u_1^lpha=\mathcal{F}_lpha(u_1))$

Coarser FE space

- On top of coarser triangulation, we create a FE-like functional space
- DOFs on geometrical objects at the coarser level (as in FEs)
- Aggregation info for DOFs $(u_1^lpha = \mathcal{F}_lpha(u_1))$

- The under-assembled space $ar{V}_0 = \{v \in ilde{V}_0 | \text{ continuous } \mathcal{F}_1(v)\}$
- \bar{V}_0 is a multiscale space

- Compute sol'on in V_0 using \bar{V}_0 correction as preconditioner (multilevel precond)
- BDDC DD preconditioner is a particular realization of \bar{V}_0 (corners/edges/faces)

- The under-assembled space $ar{V}_0 = \{v\in ilde{V}_0| \text{ continuous } \mathcal{F}_1(v)\}$
- \bar{V}_0 is a multiscale space

• Compute sol'on in V_0 using \bar{V}_0 correction as preconditioner (multilevel precond)

• BDDC DD preconditioner is a particular realization of \bar{V}_0 (corners/edges/faces)

- The under-assembled space $ar{V}_0 = \{ v \in ilde{V}_0 | \ {\sf continuous} \ {\cal F}_1(v) \}$
- \bar{V}_0 is a multiscale space

- Compute sol'on in V_0 using \bar{V}_0 correction as preconditioner (multilevel precond)
- BDDC DD preconditioner is a particular realization of \bar{V}_0 (corners/edges/faces)

The under-assembled space \overline{V}_0 can be decomposed as [Dohrmann'03]:

- Its bubble space $ar{V}_0^{
 m b}=\{v\inar{V}_0|\mathcal{F}(v)=0\}$
- The coarser FE space $V_1 = \{ v \in \bar{V}_0 | v \perp_{\tilde{\mathcal{A}}} \bar{V}_0^{\mathrm{b}} \}$

The under-assembled space \bar{V}_0 can be decomposed as [Dohrmann'03]:

- Its bubble space $ar{V}_0^{ ext{b}} = \{ v \in ar{V}_0 | \mathcal{F}(v) = 0 \}$
- The coarser FE space $V_1 = \{ v \in ar{V}_0 | v \perp_{ ilde{\mathcal{A}}} ar{V}_0^{
 m b} \}$

Coarse corner function

- Compute via local problems a basis for $V_1 = \{\Phi_1, \dots, \Phi_{n_c}\}$
- Every Φ is a coarse shape function related to a coarse DoF

Coarse edge function

- Compute via local problems a basis for $V_1 = \{\Phi_1, \dots, \Phi_{n_c}\}$
- Every Φ is a coarse shape function related to a coarse DoF

The problem in $\bar{V}_0 = V_1 \oplus V_0^{\rm b}$:

$$ar{u}_0\inar{V}_0$$
 : $a(ar{u}_0,ar{v}_0)=(f,ar{v}_0)$ $orallar{v}_0\inar{V}_0$

can be decomposed as $ar{u}_0 = ar{u}_0^b + u_1$ (orthogonality $V_1 \perp_{ ilde{\mathcal{A}}} ar{V}_0^{
m b}$)

$$u_0^{\rm b} \in \bar{V}_0^{\rm b} : a(u_0^{\rm b}, v_0^{\rm b}) = (f_0, v_0^{\rm b}) \ \forall v_0 \in \bar{V}_0^{\rm b}$$
$$u_1 \in V_1 : a(u_1, v_1) = (f_1, v_1) \ \forall v_1 \in V_1$$

• Bubble component is local to every subdomain (parallel)

Coarse global problem

The problem in $\bar{V}_0 = V_1 \oplus V_0^{\mathrm{b}}$:

$$ar{u}_0\inar{V}_0$$
 : $a(ar{u}_0,ar{v}_0)=(f,ar{v}_0)$ $\forallar{v}_0\inar{V}_0$

can be decomposed as $\bar{u}_0 = \bar{u}_0^b + u_1$ (orthogonality $V_1 \perp_{\tilde{\mathcal{A}}} \bar{V}_0^b$)

$$\begin{split} u_0^{\rm b} &\in \bar{V}_0^{\rm b} \ : \ a(u_0^{\rm b}, v_0^{\rm b}) = (f_0, v_0^{\rm b}) \ \forall v_0 \in \bar{V}_0^{\rm b} \\ u_1 &\in V_1 \ : \ a(u_1, v_1) = (f_1, v_1) \ \forall v_1 \in V_1 \end{split}$$

- Bubble component is local to every subdomain (parallel)
- Coarse global problem

The problem in $\bar{V}_0 = V_1 \oplus V_0^{\mathrm{b}}$:

$$ar{u}_0\inar{V}_0$$
 : $a(ar{u}_0,ar{v}_0)=(f,ar{v}_0)$ $\forallar{v}_0\inar{V}_0$

can be decomposed as $ar{u}_0=ar{u}_0^b+u_1$ (orthogonality $V_1\perp_{ ilde{\mathcal{A}}}ar{V}_0^{
m b})$

$$\begin{split} u_0^{\rm b} &\in \bar{V}_0^{\rm b} \ : \ a(u_0^{\rm b}, v_0^{\rm b}) = (f_0, v_0^{\rm b}) \ \forall v_0 \in \bar{V}_0^{\rm b} \\ u_1 &\in V_1 \ : \ a(u_1, v_1) = (f_1, v_1) \ \forall v_1 \in V_1 \end{split}$$

- Bubble component is local to every subdomain (parallel)
- Coarse global problem

The problem in $\bar{V}_0 = V_1 \oplus V_0^{\mathrm{b}}$:

$$ar{u}_0\inar{V}_0$$
 : $a(ar{u}_0,ar{v}_0)=(f,ar{v}_0)$ $\forallar{v}_0\inar{V}_0$

can be decomposed as $ar{u}_0=ar{u}_0^b+u_1$ (orthogonality $V_1\perp_{ ilde{\mathcal{A}}}ar{V}_0^{
m b})$

$$\begin{split} u_0^{\rm b} &\in \bar{V}_0^{\rm b} \ : \ a(u_0^{\rm b}, v_0^{\rm b}) = (f_0, v_0^{\rm b}) \ \forall v_0 \in \bar{V}_0^{\rm b} \\ u_1 &\in V_1 \ : \ a(u_1, v_1) = (f_1, v_1) \ \forall v_1 \in V_1 \end{split}$$

- Bubble component is local to every subdomain (parallel)
- Coarse global problem

Multilevel concurrency is BASIC for extreme scalability implementations

Multilevel concurrency

- L1 duties are fully parallel
- L2 duties destroy scalability because
 - # L1 proc's \sim imes 1000 # L2 proc's
 - L2 problem size increases w/ number of proc's

Multilevel concurrency

- Every processor has one level/scale duties
- Idling dramatically reduced (energy-aware solvers)
- Overlapped communications / computations among levels

Multilevel concurrency

Inter-level overlapped bulk asynchronous (MPMD) implementation in FEMPAR

FEMPAR implementation

Multilevel extension straightforward (starting the alg'thm with V_1 and level-1 mesh)

FEMPAR implementation

Multilevel extension straightforward (starting the alg'thm with V_1 and level-1 mesh)

Extremely scalable implementation in FEMPAR:

- Recursive (extensible to arbitrary # of levels)
- Inter-level overlapped (bulk asynchronous)

2 Multilevel framework

3 Multilevel linear solvers

BDDC preconditioner [Dohrmann'03, ...]

- Replace V_0 by \overline{V}_0 (reduced continuity)
- Define the injection $I: \overline{V}_0 \longrightarrow V_0$ (weight, comm and add)
- Find $\bar{u}_0 \in \bar{V}_0$ such that:

$$\bar{u}_0 \in \bar{V}_0$$
 : $a(\bar{u}_0, \bar{v}_0) = (f, \bar{v}_0) \quad \forall \bar{v}_0 \in \bar{V}_0$

and obtain $u = M_{BDDC}r = \mathcal{E}I\bar{u}_0$, where \mathcal{E} is the harmonic extension operator (correct in the interior of subdomains)

BDDC preconditioner [Dohrmann'03, ...]

- Replace V_0 by \overline{V}_0 (reduced continuity)
- Define the injection $I: \overline{V}_0 \longrightarrow V_0$ (weight, comm and add)
- Find $\bar{u}_0 \in \bar{V}_0$ such that:

$$ar{u}_0\inar{V}_0$$
 : $a(ar{u}_0,ar{v}_0)=(f,ar{v}_0)$ $orallar{v}_0\inar{V}_0$

and obtain $u = M_{BDDC}r = \mathcal{E}I\bar{u}_0$, where \mathcal{E} is the harmonic extension operator (correct in the interior of subdomains)

BDDC preconditioner [Dohrmann'03, ...]

- Replace V_0 by \overline{V}_0 (reduced continuity)
- Define the injection $I: \overline{V}_0 \longrightarrow V_0$ (weight, comm and add)
- Find $\bar{u}_0 \in \bar{V}_0$ such that:

 $\bar{u}_0 \in \bar{V}_0$: $a(\bar{u}_0, \bar{v}_0) = (f, \bar{v}_0) \quad \forall \bar{v}_0 \in \bar{V}_0$

and obtain $u = M_{BDDC}r = \mathcal{E}I\bar{u}_0$, where \mathcal{E} is the harmonic extension operator (correct in the interior of subdomains)

BDDC preconditioner [Dohrmann'03, ...]

- Replace V_0 by \overline{V}_0 (reduced continuity)
- Define the injection $I: \overline{V}_0 \longrightarrow V_0$ (weight, comm and add)
- Find $\bar{u}_0 \in \bar{V}_0$ such that:

$$\bar{u}_0 \in \bar{V}_0$$
 : $a(\bar{u}_0, \bar{v}_0) = (f, \bar{v}_0) \quad \forall \bar{v}_0 \in \bar{V}_0$

and obtain $u = M_{BDDC}r = \mathcal{E}I\bar{u}_0$, where \mathcal{E} is the harmonic extension operator (correct in the interior of subdomains)

The application of $M_{BDDC}(\cdot)$ can be implemented using the multilevel framework above

• Classify duties among levels

• 3 overlapping regions (!)

Overlapping regions

```
Solve Ax = b \text{ w} / \text{ BDDC-PCG}
```

```
Precond'er set-up (M_{BDDC})
call PCG(A, M_{BDDC}, b, x_0)
```

```
PCG
```

```
r_{0} := b - Ax_{0}
z_{0} := M_{\text{BDDC}}^{-1} r_{0}
p_{0} := z_{0}
for j = 0, ..., \text{ till CONV do}
s_{j+1} = Ap_{j}
...
z_{j+1} := M_{\text{BDDC}}^{-1} r_{j+1}
...
end for
```


19/24

Interlevel load balance

Goal: strike a balance such that blue/red areas are kept below green ones!

Weak scaling 3-lev BDDC(ce) solver 3D Laplacian problem on IBM BG/Q (JUQUEEN@JSC) 16 MPI tasks/compute node, 1 OpenMP thread/MPI task

Experiment set-up l ev # MPI tasks FEs/core 74 1K 20³/25³/30³/40³ 1st 42 8K 117 6K 175 6K 250K 343K 456 5K 125 216 343 512 729 1000 1331 2nd 1 1 1 1 1 3rd 1 n/a

Weak scaling 3-lev BDDC(ce) solver 3D Linear Elasticity problem on IBM BG/Q (JUQUEEN@JSC) 16 MPI tasks/compute node, 1 OpenMP thread/MPI task

#PCG iterations

Total time (secs.)

Experiment set-up												
Lev.		FEs/core										
1st	42.8K	74.1K	117.6K	175.6K	250K	343K	456.5K	15 ³ /20 ³ /25 ³				
2nd	125	216	343	512	729	1000	1331	7 ³				
3rd	1	1	1	1	1	1	1	n/a				

Weak scaling 4-lev BDDC(ce)

3D Laplacian problem on IBM BG/Q (JUQUEEN@JSC) 64 MPI tasks/compute node, 1 OpenMP thread/MPI task

Total time (secs.)

Lev.		FEs/core						
1st	46.7K	110.6K	216K	373.2K	592.7K	884.7K	1.26M	$10^3/20^3/25^3$
2nd	729	1.73K	3.38K	5.83K	9.26K	13.8K	19.7K	4 ³
3rd	27	64	125	216	343	512	729	3 ³
4th	1	1	1	1	1	1	1	n/a

1 Motivation

2 Multilevel framework

3 Multilevel linear solvers

Conclusion

- Extremely scalable implementation (MLBDDC)
 - Fully-distributed and communicator-aware
 - Interlevel-overlapped (bulk-asynchronous)
 - Recursive (extensible to arbitrary # levels)
 - Remarkable scalability
 - 3D Laplacian and Linear Elasticity PDEs
 - 3/4 levels are sufficient to (efficiently) scale till full JUQUEEN
 - More levels probably needed in the future

Conclusion

- Extremely scalable implementation (MLBDDC)
 - Fully-distributed and communicator-aware
 - Interlevel-overlapped (bulk-asynchronous)
 - Recursive (extensible to arbitrary # levels)
 - Remarkable scalability
 - 3D Laplacian and Linear Elasticity PDEs
 - 3/4 levels are sufficient to (efficiently) scale till full JUQUEEN
 - More levels probably needed in the future

Conclusion

- Extremely scalable implementation (MLBDDC)
 - Fully-distributed and communicator-aware
 - Interlevel-overlapped (bulk-asynchronous)
 - Recursive (extensible to arbitrary # levels)
 - Remarkable scalability
 - 3D Laplacian and Linear Elasticity PDEs
 - 3/4 levels are sufficient to (efficiently) scale till full JUQUEEN
 - More levels probably needed in the future

Future work:

- Unstructured mesh weak scalability analyses (technical aspects, mesh generation)
- Include adaptive selection of coarse DOFs (not so important in hydrodynamics)

Farewell

Thank you!

SB, A. F. Martín and J. Principe. Multilevel Balancing Domain Decomposition at Extreme Scales. Submitted, 2015.

Work funded by the European Research Council under:

- Starting Grant 258443 COMFUS: Computational Methods for Fusion Technology
- Proof of Concept Grant 640957 FEXFEM: On a free open source extreme scale finite element software

