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Poisson model problem

Domain Ω ∈ Rd

Given function f ∈ L2(Ω)

Find u ∈ H1(Ω) such that

−∆u = f in Ω

∂u

∂n
= 0 on ∂Ω



Variational formulation

Domain Ω ∈ Rd

Given function f ∈ L2(Ω)

Find u ∈ H1(Ω) such that

(u, ũ)H1(Ω) = (f , ũ)L2(Ω)

for all ũ ∈ H1(Ω).
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Spline spaces in one dimension

I Let Ω = (0, 1)

I M` is the uniform subdivision of Ω = (0, 1) in n` = n02
`

subintervals Ti of length h` := h02
−` for ` = 0, 1, 2, . . .

I Spline space Sp,k,`(Ω) is the space of all spline functions in
C k(Ω), which are piecewise polynomials of degree p on each
subinterval inM`.

I Maximum smoothness: Sp,`(Ω) := Sp,p−1,`(Ω)

I Standard B-spline basis: φ
(1)
p,`(x), . . . , φ

(m`)
p,` (x)
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Spline spaces in two and more dimensions

I Let Ω = (0, 1)d

I Tensor product B-splines: ϕ
(i+m`j)
p,` (x , y) = φ

(i)
p,`(x)φ

(j)
p,`(y)

I For Ω = (0, 1)d with d > 1: Sp,`(Ω) denotes tensor product
spline space

I More general domains: geometry mapping

I For regular geometry mappings: multigrid for parameter
domain can be used as preconditioner
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Discretization

Variational formulation:
Find u` ∈ Sp,`(Ω) such that

(u`, ũ`)H1(Ω) = (f , ũ`)L2(Ω)

for all ũ` ∈ Sp,`(Ω)

Matrix-vector notation:

K`u` = f `
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Multigrid method
One step of the multigrid method on grid level k applied to iterate

u
(0,0)
` = u

(0)
` and right-hand-side f ` to obtain x

(1)
` is given by:

I Apply ν smoothing steps

u
(0,m)
` = u

(0,m−1)
` + τ K̂−1` (f ` − K`u

(0,m−1)
` )

for m = 1, . . . , ν.

I Apply coarse-grid correction
I Compute defect and restrict to coarser grid
I Solve problem on coarser grid
I Prolongate and add result

If realized exactly (two-grid method):

u
(1)
` = u

(0,ν)
` + I ``−1K

−1
`−1I

`−1
` (f ` − Kku

(0,ν)
` )

I Standard arguments: convergence of two-grid method ⇒
convergence of the multigrid method (W-cycle)
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Intergrid transfer

I Nested spaces: Sp,`−1(Ω) ⊂ Sp,`(Ω)

I The prolongation I ``−1 is the canonical embedding

I Knot insertion algorithm

I The restriction is its transpose: I `−1` = (I ``−1)T
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Hackbusch-like convergence analysis

Convergence of two-grid method with rate q

= CACS
ν

, i.e.,

‖u∗` − u
(1)
` ‖L` ≤ q‖u∗` − u

(0)
` ‖L` ,

in matrix notation ‖T`Sν` ‖L` ≤ q,

is guaranteed by

‖L1/2` T`K
−1
` L

1/2
` ‖ ≤ CA (approximation property)

‖L−1/2` K`S
ν
` L
−1/2
` ‖ ≤ CSν

−1 (smoothing property)
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Basis-(in)dependent smoother

I Richardson smoother:

u
(0,m)
` = u

(0,m−1)
` + τ

K̂−1`

(f ` − K`u
(0,m−1)
` ),

i.e., K̂` := I

Lemma

Assume that K̂` := L` and that τ is chosen such that

0 < τ ≤ 1

‖L−1/2` K`L
−1/2
` ‖

.

Then the smoothing property is satis�ed for CS = τ−1.

Proof: Standard eigenvalue analysis.

Convergence rate: q = CACS
ν = CAτ

−1

ν



Basis-independent smoother

I Richardson smoother (in continuous understanding):

u
(0,m)
` = u
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` + τ K̂−1` (f ` − K`u
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where K̂` := L` is the Riesz isomorphism
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Basis-independent smoother for one dimension

I Classical analysis: In L2(Ω)

I L` = h−2` M` is the properly scaled mass matrix

I Proofs for standard smoothers (Richardson, Jacobi,
Gauss-Seidel) use that the mass matrix is spectrally
equivalent to its diagonal.

I This is true for B-splines, but deteriorate for increased p.

I Use K̂` := L` := h−2` M` (mass-Richardson smoother)
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Mass-Richardson smoother

I Use K̂` := L` := h−2` M`

I Condition for choice of τ reads as:

sup
u`∈Rm`\{0}

‖u`‖K`

h−1` ‖u`‖M`

= sup
u`∈Sp,`(Ω)\{0}

|u`|H1(Ω)

h−1` ‖u`‖L2(Ω)

≤ τ−1/2.

and CS = τ−1

I Need: robust inverse inequality for spline space

I Local Fourier analysis suggests:
Such a robust inverse inequality holds

I Numerical experiments [Hofreither, Zulehner 2014]:
This approach does not work well

I Choose up,`(x) := φ
(1)
p,`(x) = max{0, h` − x}p and obtain:

Such a robust inverse inequality does not hold

⇒ sup ... ≥ p ⇒ τ ≤ p−2 ⇒ ν ≥ p2
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Inverse inequality

Theorem ([T., Takacs 2015])

For all ` ∈ N0 and p ∈ N,

|u`|H1 ≤ 2
√
3h−1` ‖u`‖L2

is satis�ed for all u` ∈ S̃p,`(Ω), where S̃p,`(0, 1) is the space of all

u` ∈ Sp,`(0, 1) whose odd derivatives vanish at the boundary:

∂2l+1

∂x2l+1
u`(0) =

∂2l+1

∂x2l+1
u`(1) = 0 for all l ∈ N0 with 2l + 1 < p.

Note: S̃⊥p,`(Ω) has only p (for p even) or p − 1 (for p odd)
dimensions.
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Idea: boundary correction

Theorem ([Hofreither, T., Zulehner 2015])

For all ` ∈ N0 and p ∈ N,

|u`|H1 ≤
√
2(1 + 4

√
6)h−1` (‖u`‖2L2 + |HΓ,`u`,Γ|2H1)1/2

is satis�ed for all u` = uΓ,` + uI ,` ∈ Sp,`(Ω), where

uI ,` ∈ S
(I )
p,`(Ω) ⊆ S̃p,`(Ω), uΓ,` ∈ (S

(I )
p,`(Ω))⊥ and HΓ,` is the

discrete harmonic extension.

Proof: need inverse inequality on S̃p,`(Ω) and robust

approximation error estimate also on S̃p,`(Ω)
(cf. [T., Takacs 2015]).



Boundary correction
Reorder variables such that:

K` =

(
KΓΓ,` KT

IΓ,`

KIΓ,` KII ,`

)
, u` =

(
uΓ,`

uI ,`

)

Compute the discrete Harmonic extension:

|HΓ,`uΓ,`|H1(Ω) =

∥∥∥∥( uΓ,`

−K−1II ,`KIΓ,`uΓ,`

)∥∥∥∥
K`

= ‖uΓ,`‖KΓΓ,`−KT
IΓ,`K

−1

II ,`KIΓ,`
.
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Robust approximation error estimate

Theorem ([T., Takacs 2015])

For each u ∈ H1(Ω), each ` ∈ N0 and p ∈ N:

‖(I − Πp,`)u‖L2(Ω) ≤ 2
√
2 h`|u|H1(Ω)

is satis�ed, where Πp,` is the H1-orthogonal projection to Sp,`(Ω).

The approximation property follows using

I standard arguments (for the h−2` M` part)

I ‖u`‖K̃`
= |HΓ,`uΓ,`|H1(Ω) ≤ |u`|H1(Ω) = ‖u`‖K` (for the K̃` part)
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Convergence theorem

Theorem ([Hofreither, T., Zulehner 2015])

The two-grid method converges with rate CACS
ν if ν > CACS

smoothing steps are applied. The constants CA and CS do not

depend on the grid size h` and the spline degree p.

The extension to the W-cycle multigrid method is standard.
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Matrices from tensor-product splines

I The mass matrix has a tensor-product structure:

M` = M` ⊗M`

I The sti�ness matrix is the sum of two tensor-product
matrices:

K` = K` ⊗M` + M` ⊗ K`

I Tensor-product structure can be used for invertingM`, but
not for inverting K`
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Smoother for two dimensions

K̂`,orig = K̂` ⊗M` + M` ⊗ K̂`

= (h−2` M` + K̃`)⊗M` + M` ⊗ (h−2` M` + K̃`)

= 2h−2` M` ⊗M` + K̃` ⊗M` + M` ⊗ K̃`

h h2` K̂` ⊗ K̂`︸ ︷︷ ︸
tensor-product

− h2` K̃` ⊗ K̃`︸ ︷︷ ︸
low-rank correction

=: K̂`,

where K̂` = h−1` M` + K̃`.



Shermann Morrisson Woodburry formula

Let A ∈ RN×N , B ∈ Rn×n, P ∈ Rn×N with full rank. Then:

(A− PBPT )−1 = A−1 + A−1P(B−1 − PTA−1P)−1PTA−1

I The inversion of A = K̂` ⊗ K̂` can be done using
tensor-product structure and solvers for one dimension

I The rest lives only in the boundary layer

I Optimal order: multigrid solver has the same order of
complexity as the multiplication with K̂`
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One dimension

p 1 2 3 4 5 6 7 8

` = 10 22 20 20 21 21 20 20 20
` = 11 23 20 20 21 20 20 20 20
` = 12 23 20 20 20 20 20 20 20

p 9 10 12 14 16 18 20

` = 10 20 20 20 18 18 17 17
` = 11 20 19 19 18 19 18 17
` = 12 20 20 19 18 18 18 18

νpre + νpost = 1 + 1, τ = 0.14
Stopping criterion: Euclidean norm of the initial residual is reduced
by a factor of ε = 10−8.



Two dimensions

p 2 3 4 5 6 7 8 9

` = 5 82 80 75 76 76 73 72 72
` = 6 83 87 76 74 75 73 72 72

p 10 11 12 13 14 15 16

` = 5 70 71 70 68 69 69 66
` = 6 70 70 69 68 68 67 65

νpre + νpost = 1 + 1, τ = 0.10 (for p ≤ 3) and τ = 0.11 (for p > 3)
Stopping criterion: Euclidean norm of the initial residual is reduced
by a factor of ε = 10−8.
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Conclusions
I (One and) two dimensions

I Robust convergence rates, robust number of smoothing
steps

I Optimal complexity in the sense: �as complex as the
multiplication with K`�

I Rigorous analysis
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