Smoothers for efficient multigrid methods in IGA

Clemens Hofreither, <u>Stefan Takacs</u>, Walter Zulehner

DD23, July 2015

supported by

Der Wissenschaftsfonds.

ション ふゆ アメリア メリア しょうくの

The work was funded by the Austrian Science Fund (FWF): NFN S117 (first and third author) and J3362-N25 (second author).

Outline

Preliminaries

Model problem IGA discretization

Multigrid algorithm

Multigrid framework Basis-independent smoother Smoother for one dimension Smoother for two dimensions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Numerical results

Conclusions and Outlook

Outline

Preliminaries Model problem

IGA discretization

Multigrid algorithm

Multigrid framework Basis-independent smoother Smoother for one dimension Smoother for two dimensions

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Numerical results

Conclusions and Outlook

Poisson model problem

Domain $\Omega \in \mathbb{R}^d$

Given function $f \in L^2(\Omega)$

Find $u \in H^1(\Omega)$ such that

$$-\Delta u = f \qquad \text{in } \Omega$$
$$\frac{\partial u}{\partial n} = 0 \qquad \text{on } \partial \Omega$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Variational formulation

Domain $\Omega \in \mathbb{R}^d$

Given function $f \in L^2(\Omega)$

Find $u \in H^1(\Omega)$ such that

$$(u,\tilde{u})_{H^1(\Omega)}=(f,\tilde{u})_{L^2(\Omega)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for all $\tilde{u} \in H^1(\Omega)$.

Outline

Preliminaries Model problem IGA discretization

Multigrid algorithm

Multigrid framework Basis-independent smoother Smoother for one dimension Smoother for two dimensions

Numerical results

Conclusions and Outlook

• \mathcal{M}_{ℓ} is the uniform subdivision of $\Omega = (0, 1)$ in $n_{\ell} = n_0 2^{\ell}$ subintervals T_i of length $h_{\ell} := h_0 2^{-\ell}$ for $\ell = 0, 1, 2, ...$

ション ふゆ アメリア メリア しょうくの

► \mathcal{M}_{ℓ} is the uniform subdivision of $\Omega = (0, 1)$ in $n_{\ell} = n_0 2^{\ell}$ subintervals T_i of length $h_{\ell} := h_0 2^{-\ell}$ for $\ell = 0, 1, 2, ...$

▶ Spline space $S_{p,k,\ell}(\Omega)$ is the space of all spline functions in $C^k(\Omega)$, which are piecewise polynomials of degree p on each subinterval in \mathcal{M}_{ℓ} .

► \mathcal{M}_{ℓ} is the uniform subdivision of $\Omega = (0, 1)$ in $n_{\ell} = n_0 2^{\ell}$ subintervals T_i of length $h_{\ell} := h_0 2^{-\ell}$ for $\ell = 0, 1, 2, ...$

▶ Spline space $S_{p,k,\ell}(\Omega)$ is the space of all spline functions in $C^k(\Omega)$, which are piecewise polynomials of degree p on each subinterval in \mathcal{M}_{ℓ} .

• Maximum smoothness: $S_{p,\ell}(\Omega) := S_{p,p-1,\ell}(\Omega)$

► \mathcal{M}_{ℓ} is the uniform subdivision of $\Omega = (0, 1)$ in $n_{\ell} = n_0 2^{\ell}$ subintervals T_i of length $h_{\ell} := h_0 2^{-\ell}$ for $\ell = 0, 1, 2, ...$

▶ Spline space $S_{p,k,\ell}(\Omega)$ is the space of all spline functions in $C^k(\Omega)$, which are piecewise polynomials of degree p on each subinterval in \mathcal{M}_{ℓ} .

- Maximum smoothness: $S_{p,\ell}(\Omega) := S_{p,p-1,\ell}(\Omega)$
- ► Standard B-spline basis: $\phi_{p,\ell}^{(1)}(x), \dots, \phi_{p,\ell}^{(m_{\ell})}(x)$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• Let
$$\Omega = (0,1)^d$$

• Let
$$\Omega = (0,1)^d$$

► Tensor product B-splines: $\varphi_{p,\ell}^{(i+m_\ell j)}(x,y) = \phi_{p,\ell}^{(i)}(x)\phi_{p,\ell}^{(j)}(y)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Let
$$\Omega = (0,1)^d$$

- ► Tensor product B-splines: $\varphi_{p,\ell}^{(i+m_\ell j)}(x,y) = \phi_{p,\ell}^{(i)}(x)\phi_{p,\ell}^{(j)}(y)$
- For Ω = (0,1)^d with d > 1: S_{p,ℓ}(Ω) denotes tensor product spline space

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Let
$$\Omega = (0,1)^d$$

- ► Tensor product B-splines: $\varphi_{p,\ell}^{(i+m_\ell j)}(x,y) = \phi_{p,\ell}^{(i)}(x)\phi_{p,\ell}^{(j)}(y)$
- For Ω = (0,1)^d with d > 1: S_{p,ℓ}(Ω) denotes tensor product spline space

ション ふゆ アメリア メリア しょうくの

More general domains: geometry mapping

• Let
$$\Omega = (0,1)^d$$

- ► Tensor product B-splines: $\varphi_{p,\ell}^{(i+m_\ell j)}(x,y) = \phi_{p,\ell}^{(i)}(x)\phi_{p,\ell}^{(j)}(y)$
- For Ω = (0,1)^d with d > 1: S_{p,ℓ}(Ω) denotes tensor product spline space
- More general domains: geometry mapping
- For regular geometry mappings: multigrid for parameter domain can be used as preconditioner

Discretization

Variational formulation:

Find $u_\ell \in S_{p,\ell}(\Omega)$ such that

$$(u_\ell, \tilde{u}_\ell)_{H^1(\Omega)} = (f, \tilde{u}_\ell)_{L^2(\Omega)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for all $ilde{u}_\ell \in S_{p,\ell}(\Omega)$

Discretization

Variational formulation:

Find $u_\ell \in S_{p,\ell}(\Omega)$ such that

$$(u_\ell, \tilde{u}_\ell)_{H^1(\Omega)} = (f, \tilde{u}_\ell)_{L^2(\Omega)}$$

for all $\,\widetilde{u}_\ell\in S_{p,\ell}(\Omega)\,$

Matrix-vector notation:

$$K_{\ell}\underline{u}_{\ell} = \overline{f}_{\ell}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

Preliminaries

Model problem IGA discretization

Multigrid algorithm Multigrid framework

Basis-independent smoother Smoother for one dimension Smoother for two dimensions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Numerical results

Conclusions and Outlook

Multigrid method

One step of the multigrid method on grid level k applied to iterate $\underline{u}_{\ell}^{(0,0)} = \underline{u}_{\ell}^{(0)}$ and right-hand-side \underline{f}_{ℓ} to obtain $\underline{x}_{\ell}^{(1)}$ is given by:

Apply v smoothing steps

$$\underline{u}_{\ell}^{(0,m)} = \underline{u}_{\ell}^{(0,m-1)} + \tau \widehat{K}_{\ell}^{-1} (\overline{f}_{\ell} - K_{\ell} \underline{u}_{\ell}^{(0,m-1)})$$

うして ふゆう ふほう ふほう うらつ

for $m = 1, ..., \nu$.

Multigrid method

One step of the multigrid method on grid level k applied to iterate $\underline{u}_{\ell}^{(0,0)} = \underline{u}_{\ell}^{(0)}$ and right-hand-side \underline{f}_{ℓ} to obtain $\underline{x}_{\ell}^{(1)}$ is given by:

Apply v smoothing steps

$$\underline{u}_{\ell}^{(0,m)} = \underline{u}_{\ell}^{(0,m-1)} + \tau \widehat{K}_{\ell}^{-1} (\overline{f}_{\ell} - K_{\ell} \underline{u}_{\ell}^{(0,m-1)})$$

うして ふゆう ふほう ふほう うらつ

for $m = 1, \ldots, \nu$.

- Apply coarse-grid correction
 - Compute defect and restrict to coarser grid
 - Solve problem on coarser grid
 - Prolongate and add result

Multigrid method

One step of the multigrid method on grid level k applied to iterate $\underline{u}_{\ell}^{(0,0)} = \underline{u}_{\ell}^{(0)}$ and right-hand-side \underline{f}_{ℓ} to obtain $\underline{x}_{\ell}^{(1)}$ is given by:

Apply v smoothing steps

$$\underline{u}_{\ell}^{(0,m)} = \underline{u}_{\ell}^{(0,m-1)} + \tau \widehat{K}_{\ell}^{-1} (\overline{f}_{\ell} - K_{\ell} \underline{u}_{\ell}^{(0,m-1)})$$

for $m = 1, \ldots, \nu$.

- Apply coarse-grid correction
 - Compute defect and restrict to coarser grid
 - Solve problem on coarser grid
 - Prolongate and add result

If realized exactly (two-grid method):

$$\underline{u}_{\ell}^{(1)} = \underline{u}_{\ell}^{(0,\nu)} + I_{\ell-1}^{\ell} K_{\ell-1}^{-1} I_{\ell}^{\ell-1} (\overline{f}_{\ell} - K_k \underline{u}_{\ell}^{(0,\nu)})$$

Standard arguments: convergence of two-grid method ⇒ convergence of the multigrid method (W-cycle)

Intergrid transfer

▶ Nested spaces: $S_{p,\ell-1}(\Omega) \subset S_{p,\ell}(\Omega)$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Intergrid transfer

- Nested spaces: $S_{p,\ell-1}(\Omega) \subset S_{p,\ell}(\Omega)$
- The prolongation $I_{\ell-1}^\ell$ is the canonical embedding

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Knot insertion algorithm

Intergrid transfer

- Nested spaces: $S_{p,\ell-1}(\Omega) \subset S_{p,\ell}(\Omega)$
- The prolongation $I_{\ell-1}^\ell$ is the canonical embedding

Knot insertion algorithm

• The restriction is its transpose:
$$I_{\ell}^{\ell-1} = (I_{\ell-1}^{\ell})^T$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hackbusch-like convergence analysis

Convergence of two-grid method with rate *q*, i.e.,

$$\|\underline{u}_{\ell}^{*} - \underline{u}_{\ell}^{(1)}\|_{L_{\ell}} \leq q \|\underline{u}_{\ell}^{*} - \underline{u}_{\ell}^{(0)}\|_{L_{\ell}},$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Hackbusch-like convergence analysis

Convergence of two-grid method with rate *q*, i.e.,

$$\|\underline{u}_{\ell}^* - \underline{u}_{\ell}^{(1)}\|_{L_{\ell}} \leq q \|\underline{u}_{\ell}^* - \underline{u}_{\ell}^{(0)}\|_{L_{\ell}},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

in matrix notation $\| {\mathcal T}_\ell S_\ell^
u \|_{L_\ell} \leq q$,

Hackbusch-like convergence analysis

Convergence of two-grid method with rate $q = \frac{C_A C_S}{\nu}$, i.e.,

$$\|\underline{u}_{\ell}^{*} - \underline{u}_{\ell}^{(1)}\|_{L_{\ell}} \leq q \|\underline{u}_{\ell}^{*} - \underline{u}_{\ell}^{(0)}\|_{L_{\ell}},$$

in matrix notation $\| {\mathcal T}_\ell S_\ell^
u \|_{L_\ell} \leq q$,

is guaranteed by

 $\begin{aligned} \|L_{\ell}^{1/2} T_{\ell} K_{\ell}^{-1} L_{\ell}^{1/2} \| &\leq C_{A} \quad \text{(approximation property)} \\ \|L_{\ell}^{-1/2} K_{\ell} S_{\ell}^{\nu} L_{\ell}^{-1/2} \| &\leq C_{S} \nu^{-1} \quad \text{(smoothing property)} \end{aligned}$

Outline

Preliminaries

Model problem IGA discretization

Multigrid algorithm

Multigrid framework

Basis-independent smoother

Smoother for one dimension Smoother for two dimensions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Numerical results

Conclusions and Outlook

Basis-(in)dependent smoother

Richardson smoother:

$$\underline{u}_{\ell}^{(0,m)} = \underline{u}_{\ell}^{(0,m-1)} + \tau \qquad (\overline{f}_{\ell} - K_{\ell} \underline{u}_{\ell}^{(0,m-1)}),$$

i.e.,
$$\widehat{K}_{\ell} := I$$

Basis-independent smoother

Richardson smoother (in continuous understanding):

$$\underline{u}_{\ell}^{(0,m)} = \underline{u}_{\ell}^{(0,m-1)} + \tau \widehat{K}_{\ell}^{-1} (\overline{f}_{\ell} - K_{\ell} \underline{u}_{\ell}^{(0,m-1)}),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\widehat{\mathcal{K}}_\ell := L_\ell$ is the Riesz isomorphism

Basis-independent smoother

Richardson smoother (in continuous understanding):

$$\underline{u}_{\ell}^{(0,m)} = \underline{u}_{\ell}^{(0,m-1)} + \tau \widehat{K}_{\ell}^{-1} (\overline{f}_{\ell} - K_{\ell} \underline{u}_{\ell}^{(0,m-1)}),$$

where $\widehat{\mathcal{K}}_\ell := L_\ell$ is the Riesz isomorphism

Lemma

Assume that $\widehat{\mathcal{K}}_\ell := \mathsf{L}_\ell$ and that au is chosen such that

$$0 < \tau \le \frac{1}{\|L_{\ell}^{-1/2} \kappa_{\ell} L_{\ell}^{-1/2}\|}.$$

Then the smoothing property is satisfied for $C_S = \tau^{-1}$.

Proof: Standard eigenvalue analysis.

Basis-independent smoother

Richardson smoother (in continuous understanding):

$$\underline{u}_{\ell}^{(0,m)} = \underline{u}_{\ell}^{(0,m-1)} + \tau \widehat{K}_{\ell}^{-1} (\overline{f}_{\ell} - K_{\ell} \underline{u}_{\ell}^{(0,m-1)}),$$

where $\widehat{\mathcal{K}}_\ell := L_\ell$ is the Riesz isomorphism

Lemma

Assume that $\widehat{\mathcal{K}}_\ell := \mathsf{L}_\ell$ and that au is chosen such that

$$0 < \tau \le \frac{1}{\|L_{\ell}^{-1/2} \kappa_{\ell} L_{\ell}^{-1/2}\|}$$

Then the smoothing property is satisfied for $C_S = \tau^{-1}$.

Proof: Standard eigenvalue analysis.

Convergence rate:
$$q = \frac{C_A C_S}{\nu} = \frac{C_A \tau^{-1}}{\nu}$$

Outline

Preliminaries

Model problem IGA discretization

Multigrid algorithm

Multigrid framework Basis-independent smoother Smoother for one dimension Smoother for two dimensions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Numerical results

Conclusions and Outlook

Basis-independent smoother for one dimension

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• Classical analysis: In $L^2(\Omega)$

Basis-independent smoother for one dimension

- Classical analysis: In $L^2(\Omega)$
- $L_{\ell} = h_{\ell}^{-2} M_{\ell}$ is the properly scaled mass matrix

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
Basis-independent smoother for one dimension

- Classical analysis: In $L^2(\Omega)$
- $L_{\ell} = h_{\ell}^{-2} M_{\ell}$ is the properly scaled mass matrix
- Proofs for standard smoothers (Richardson, Jacobi, Gauss-Seidel) use that the mass matrix is spectrally equivalent to its diagonal.

Basis-independent smoother for one dimension

- Classical analysis: In $L^2(\Omega)$
- $L_{\ell} = h_{\ell}^{-2} M_{\ell}$ is the properly scaled mass matrix
- Proofs for standard smoothers (Richardson, Jacobi, Gauss-Seidel) use that the mass matrix is spectrally equivalent to its diagonal.
 - This is true for B-splines, but deteriorate for increased p.

Basis-independent smoother for one dimension

- Classical analysis: In $L^2(\Omega)$
- $L_{\ell} = h_{\ell}^{-2} M_{\ell}$ is the properly scaled mass matrix
- Proofs for standard smoothers (Richardson, Jacobi, Gauss-Seidel) use that the mass matrix is spectrally equivalent to its diagonal.
 - This is true for B-splines, but deteriorate for increased p.

• Use
$$\widehat{K}_{\ell} := L_{\ell} := h_{\ell}^{-2} M_{\ell}$$
 (mass-Richardson smoother)

• Use
$$\widehat{K}_{\ell} := L_{\ell} := h_{\ell}^{-2} M_{\ell}$$

• Use
$$\widehat{K}_{\ell} := L_{\ell} := h_{\ell}^{-2} M_{\ell}$$

• Condition for choice of au reads as:

$$\sup_{\underline{u}_{\ell} \in \mathbb{R}^{m_{\ell}} \setminus \{0\}} \frac{\|\underline{u}_{\ell}\|_{K_{\ell}}}{h_{\ell}^{-1} \|\underline{u}_{\ell}\|_{M_{\ell}}} = \sup_{u_{\ell} \in S_{p,\ell}(\Omega) \setminus \{0\}} \frac{|u_{\ell}|_{H^{1}(\Omega)}}{h_{\ell}^{-1} \|u_{\ell}\|_{L^{2}(\Omega)}} \leq \tau^{-1/2}.$$

and $C_{S} = \tau^{-1}$

• Use
$$\widehat{K}_{\ell} := L_{\ell} := h_{\ell}^{-2} M_{\ell}$$

• Condition for choice of τ reads as:

$$\sup_{\underline{u}_{\ell} \in \mathbb{R}^{m_{\ell}} \setminus \{0\}} \frac{\|\underline{u}_{\ell}\|_{K_{\ell}}}{h_{\ell}^{-1} \|\underline{u}_{\ell}\|_{M_{\ell}}} = \sup_{u_{\ell} \in S_{p,\ell}(\Omega) \setminus \{0\}} \frac{|u_{\ell}|_{H^{1}(\Omega)}}{h_{\ell}^{-1} \|u_{\ell}\|_{L^{2}(\Omega)}} \leq \tau^{-1/2}.$$

and $C_{S} = \tau^{-1}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Need: robust inverse inequality for spline space

• Use
$$\widehat{K}_{\ell} := L_{\ell} := h_{\ell}^{-2} M_{\ell}$$

• Condition for choice of τ reads as:

$$\sup_{\underline{u}_{\ell} \in \mathbb{R}^{m_{\ell}} \setminus \{0\}} \frac{\|\underline{u}_{\ell}\|_{K_{\ell}}}{h_{\ell}^{-1} \|\underline{u}_{\ell}\|_{M_{\ell}}} = \sup_{u_{\ell} \in S_{p,\ell}(\Omega) \setminus \{0\}} \frac{|u_{\ell}|_{H^{1}(\Omega)}}{h_{\ell}^{-1} \|u_{\ell}\|_{L^{2}(\Omega)}} \leq \tau^{-1/2}.$$

and $C_{S} = \tau^{-1}$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- ► Need: robust inverse inequality for spline space
- Local Fourier analysis suggests: Such a robust inverse inequality holds

• Use
$$\widehat{K}_{\ell} := L_{\ell} := h_{\ell}^{-2} M_{\ell}$$

• Condition for choice of τ reads as:

$$\sup_{\underline{u}_{\ell} \in \mathbb{R}^{m_{\ell}} \setminus \{0\}} \frac{\|\underline{u}_{\ell}\|_{K_{\ell}}}{h_{\ell}^{-1} \|\underline{u}_{\ell}\|_{M_{\ell}}} = \sup_{u_{\ell} \in S_{p,\ell}(\Omega) \setminus \{0\}} \frac{|u_{\ell}|_{H^{1}(\Omega)}}{h_{\ell}^{-1} \|u_{\ell}\|_{L^{2}(\Omega)}} \leq \tau^{-1/2}.$$

and $C_{S} = \tau^{-1}$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- Need: robust inverse inequality for spline space
- Local Fourier analysis suggests: Such a robust inverse inequality holds
- Numerical experiments [Hofreither, Zulehner 2014]: This approach does not work well

• Use
$$\widehat{K}_{\ell} := L_{\ell} := h_{\ell}^{-2} M_{\ell}$$

• Condition for choice of τ reads as:

$$\sup_{\underline{u}_{\ell} \in \mathbb{R}^{m_{\ell}} \setminus \{0\}} \frac{\|\underline{u}_{\ell}\|_{K_{\ell}}}{h_{\ell}^{-1} \|\underline{u}_{\ell}\|_{M_{\ell}}} = \sup_{u_{\ell} \in S_{p,\ell}(\Omega) \setminus \{0\}} \frac{|u_{\ell}|_{H^{1}(\Omega)}}{h_{\ell}^{-1} \|u_{\ell}\|_{L^{2}(\Omega)}} \leq \tau^{-1/2}.$$

and $C_{S} = \tau^{-1}$

- Need: robust inverse inequality for spline space
- Local Fourier analysis suggests: Such a robust inverse inequality holds
- Numerical experiments [Hofreither, Zulehner 2014]: This approach does not work well

• Use
$$\widehat{K}_{\ell} := L_{\ell} := h_{\ell}^{-2} M_{\ell}$$

• Condition for choice of τ reads as:

$$\sup_{\underline{u}_{\ell} \in \mathbb{R}^{m_{\ell}} \setminus \{0\}} \frac{\|\underline{u}_{\ell}\|_{K_{\ell}}}{h_{\ell}^{-1} \|\underline{u}_{\ell}\|_{M_{\ell}}} = \sup_{u_{\ell} \in S_{p,\ell}(\Omega) \setminus \{0\}} \frac{|u_{\ell}|_{H^{1}(\Omega)}}{h_{\ell}^{-1} \|u_{\ell}\|_{L^{2}(\Omega)}} \leq \tau^{-1/2}.$$

and $C_{S} = \tau^{-1}$

Need: robust inverse inequality for spline space

- Local Fourier analysis suggests:
 Such a robust inverse inequality holds
- Numerical experiments [Hofreither, Zulehner 2014]: This approach does not work well

► Choose
$$u_{p,\ell}(x) := \phi_{p,\ell}^{(1)}(x) = \max\{0, h_\ell - x\}^p$$
 and obtain:
Such a robust inverse inequality does not hold
 $\Rightarrow \sup ... \ge p \qquad \Rightarrow \tau \le p^{-2} \qquad \Rightarrow \nu \ge p^2$

Inverse inequality

Theorem ([T., Takacs 2015])

For all $\ell \in \mathbb{N}_0$ and $p \in \mathbb{N}$,

$$|u_{\ell}|_{H^1} \leq 2\sqrt{3}h_{\ell}^{-1} ||u_{\ell}||_{L^2}$$

is satisfied for all $u_{\ell} \in \widetilde{S}_{p,\ell}(\Omega)$, where $\widetilde{S}_{p,\ell}(0,1)$ is the space of all $u_{\ell} \in S_{p,\ell}(0,1)$ whose odd derivatives vanish at the boundary:

$$\frac{\partial^{2l+1}}{\partial x^{2l+1}}u_{\ell}(0) = \frac{\partial^{2l+1}}{\partial x^{2l+1}}u_{\ell}(1) = 0 \text{ for all } l \in \mathbb{N}_0 \text{ with } 2l+1 < p.$$

Inverse inequality

Theorem ([T., Takacs 2015])

For all $\ell \in \mathbb{N}_0$ and $p \in \mathbb{N}$,

$$|u_{\ell}|_{H^{1}} \leq 2\sqrt{3}h_{\ell}^{-1} ||u_{\ell}||_{L^{2}}$$

is satisfied for all $u_{\ell} \in \widetilde{S}_{p,\ell}(\Omega)$, where $\widetilde{S}_{p,\ell}(0,1)$ is the space of all $u_{\ell} \in S_{p,\ell}(0,1)$ whose odd derivatives vanish at the boundary:

$$\frac{\partial^{2l+1}}{\partial x^{2l+1}}u_\ell(0) = \frac{\partial^{2l+1}}{\partial x^{2l+1}}u_\ell(1) = 0 \text{ for all } l \in \mathbb{N}_0 \text{ with } 2l+1 < p.$$

Note: $\widetilde{S}_{p,\ell}^{\perp}(\Omega)$ has only p (for p even) or p-1 (for p odd) dimensions.

Idea: boundary correction

Theorem ([Hofreither, T., Zulehner 2015])

For all $\ell \in \mathbb{N}_0$ and $p \in \mathbb{N}$,

$$|u_{\ell}|_{H^{1}} \leq \sqrt{2}(1+4\sqrt{6})h_{\ell}^{-1}(||u_{\ell}||_{L^{2}}^{2}+|\mathcal{H}_{\Gamma,\ell}u_{\ell,\Gamma}|_{H^{1}}^{2})^{1/2}$$

is satisfied for all $u_{\ell} = u_{\Gamma,\ell} + u_{I,\ell} \in S_{p,\ell}(\Omega)$, where $u_{I,\ell} \in S_{p,\ell}^{(I)}(\Omega) \subseteq \widetilde{S}_{p,\ell}(\Omega)$, $u_{\Gamma,\ell} \in (S_{p,\ell}^{(I)}(\Omega))^{\perp}$ and $\mathcal{H}_{\Gamma,\ell}$ is the discrete harmonic extension.

Proof: need inverse inequality on $\widetilde{S}_{p,\ell}(\Omega)$ and robust approximation error estimate also on $\widetilde{S}_{p,\ell}(\Omega)$ (cf. [T., Takacs 2015]).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへで

Reorder variables such that:

$$\mathcal{K}_{\ell} = \begin{pmatrix} \mathcal{K}_{\Gamma\Gamma,\ell} & \mathcal{K}_{I\Gamma,\ell}^{T} \\ \mathcal{K}_{I\Gamma,\ell} & \mathcal{K}_{II,\ell} \end{pmatrix}, \qquad \underline{\mathcal{U}}_{\ell} = \begin{pmatrix} \underline{\mathcal{U}}_{\Gamma,\ell} \\ \underline{\mathcal{U}}_{I,\ell} \end{pmatrix}$$

Reorder variables such that:

$$\mathcal{K}_{\ell} = \begin{pmatrix} \mathcal{K}_{\Gamma\Gamma,\ell} & \mathcal{K}_{I\Gamma,\ell}^{T} \\ \mathcal{K}_{I\Gamma,\ell} & \mathcal{K}_{II,\ell} \end{pmatrix}, \qquad \underline{\boldsymbol{u}}_{\ell} = \begin{pmatrix} \underline{\boldsymbol{u}}_{\Gamma,\ell} \\ \underline{\boldsymbol{u}}_{I,\ell} \end{pmatrix}$$

Compute the discrete Harmonic extension:

$$|\mathcal{H}_{\Gamma,\ell}u_{\Gamma,\ell}|_{H^{1}(\Omega)} = \left\| \begin{pmatrix} \underline{u}_{\Gamma,\ell} \\ -K_{II,\ell}^{-1}K_{I\Gamma,\ell}\underline{u}_{\Gamma,\ell} \end{pmatrix} \right\|_{K_{\ell}} = \|\underline{u}_{\Gamma,\ell}\|_{K_{\Gamma\Gamma,\ell}-K_{I\Gamma,\ell}^{T}K_{II,\ell}^{-1}K_{I\Gamma,\ell}}.$$

(ロ)、

Reorder variables such that:

$$\mathcal{K}_{\ell} = \begin{pmatrix} \mathcal{K}_{\Gamma\Gamma,\ell} & \mathcal{K}_{I\Gamma,\ell}^{T} \\ \mathcal{K}_{I\Gamma,\ell} & \mathcal{K}_{II,\ell} \end{pmatrix}, \qquad \underline{\mathcal{u}}_{\ell} = \begin{pmatrix} \underline{\mathcal{u}}_{\Gamma,\ell} \\ \underline{\mathcal{u}}_{I,\ell} \end{pmatrix}$$

Compute the discrete Harmonic extension:

$$|\mathcal{H}_{\Gamma,\ell}u_{\Gamma,\ell}|_{H^{1}(\Omega)} = \left\| \begin{pmatrix} \underline{u}_{\Gamma,\ell} \\ -K_{II,\ell}^{-1}K_{I\Gamma,\ell}\underline{u}_{\Gamma,\ell} \end{pmatrix} \right\|_{K_{\ell}} = \|\underline{u}_{\Gamma,\ell}\|_{K_{\Gamma\Gamma,\ell}-K_{I\Gamma,\ell}^{T}K_{II,\ell}^{-1}K_{I\Gamma,\ell}}$$

Generalized inverse inequality:

$$\|\underline{u}_{\ell}\|_{\mathcal{K}_{\ell}} \leq \sqrt{2}(1+4\sqrt{6})\|\underline{u}_{\ell}\|_{L_{\ell}}$$

with

$$\widehat{\mathcal{K}}_\ell := L_\ell := h_\ell^{-2} M_\ell + \underbrace{\begin{pmatrix} \mathcal{K}_{\Gamma\Gamma,\ell} - \mathcal{K}_{I\Gamma,\ell}^T \mathcal{K}_{II,\ell}^{-1} \mathcal{K}_{I\Gamma,\ell} & 0 \\ 0 & 0 \end{pmatrix}}_{\widetilde{\mathcal{K}}_\ell :=}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Reorder variables such that:

$$\mathcal{K}_{\ell} = \begin{pmatrix} \mathcal{K}_{\Gamma\Gamma,\ell} & \mathcal{K}_{I\Gamma,\ell}^{T} \\ \mathcal{K}_{I\Gamma,\ell} & \mathcal{K}_{II,\ell} \end{pmatrix}, \qquad \underline{u}_{\ell} = \begin{pmatrix} \underline{u}_{\Gamma,\ell} \\ \underline{u}_{I,\ell} \end{pmatrix}$$

Compute the discrete Harmonic extension:

$$|\mathcal{H}_{\Gamma,\ell}u_{\Gamma,\ell}|_{H^{1}(\Omega)} = \left\| \begin{pmatrix} \underline{u}_{\Gamma,\ell} \\ -K_{II,\ell}^{-1}K_{I\Gamma,\ell}\underline{u}_{\Gamma,\ell} \end{pmatrix} \right\|_{K_{\ell}} = \|\underline{u}_{\Gamma,\ell}\|_{K_{\Gamma\Gamma,\ell}-K_{I\Gamma,\ell}^{T}K_{II,\ell}^{-1}K_{I\Gamma,\ell}}$$

Generalized inverse inequality:

$$\|L_{\ell}^{-1/2} K_{\ell} L_{\ell}^{-1/2}\| \le 2(1+4\sqrt{6})^2$$

with

$$\widehat{\mathcal{K}}_\ell := \mathcal{L}_\ell := h_\ell^{-2} M_\ell + \underbrace{\begin{pmatrix} \mathcal{K}_{\Gamma\Gamma,\ell} - \mathcal{K}_{I\Gamma,\ell}^T \mathcal{K}_{II,\ell}^{-1} \mathcal{K}_{I\Gamma,\ell} & 0 \\ 0 & 0 \end{pmatrix}}_{\widetilde{\mathcal{K}}_\ell} :=$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Reorder variables such that:

$$\mathcal{K}_{\ell} = \begin{pmatrix} \mathcal{K}_{\Gamma\Gamma,\ell} & \mathcal{K}_{I\Gamma,\ell}^{T} \\ \mathcal{K}_{I\Gamma,\ell} & \mathcal{K}_{II,\ell} \end{pmatrix}, \qquad \underline{u}_{\ell} = \begin{pmatrix} \underline{u}_{\Gamma,\ell} \\ \underline{u}_{I,\ell} \end{pmatrix}$$

Compute the discrete Harmonic extension:

$$|\mathcal{H}_{\Gamma,\ell}u_{\Gamma,\ell}|_{H^{1}(\Omega)} = \left\| \begin{pmatrix} \underline{u}_{\Gamma,\ell} \\ -K_{II,\ell}^{-1}K_{I\Gamma,\ell}\underline{u}_{\Gamma,\ell} \end{pmatrix} \right\|_{K_{\ell}} = \|\underline{u}_{\Gamma,\ell}\|_{K_{\Gamma\Gamma,\ell}-K_{I\Gamma,\ell}^{T}K_{II,\ell}^{-1}K_{I\Gamma,\ell}}$$

Generalized inverse inequality:

$$\|L_{\ell}^{-1/2}K_{\ell}L_{\ell}^{-1/2}\| \le 2(1+4\sqrt{6})^2$$

with

$$\widehat{K}_{\ell} := L_{\ell} := h_{\ell}^{-2} M_{\ell} + \underbrace{\begin{pmatrix} K_{\Gamma\Gamma,\ell} - K_{I\Gamma,\ell}^{T} K_{II,\ell}^{-1} K_{I\Gamma,\ell} & 0 \\ 0 & 0 \end{pmatrix}}_{\widetilde{K}_{\ell} :=}$$

 \Rightarrow Smoothing property for $0 < \tau \leq 2^{-1} (1 + 4\sqrt{6})^{-2}$

Robust approximation error estimate

Theorem ([T., Takacs 2015])

For each $u \in H^1(\Omega)$, each $\ell \in \mathbb{N}_0$ and $p \in \mathbb{N}$:

$$\|(I - \Pi_{p,\ell})u\|_{L^2(\Omega)} \le 2\sqrt{2} h_\ell |u|_{H^1(\Omega)}$$

is satisfied, where $\Pi_{p,\ell}$ is the H^1 -orthogonal projection to $S_{p,\ell}(\Omega)$.

うして ふゆう ふほう ふほう うらつ

Robust approximation error estimate

Theorem ([T., Takacs 2015])

For each $u \in H^1(\Omega)$, each $\ell \in \mathbb{N}_0$ and $p \in \mathbb{N}$:

$$\|(I - \Pi_{p,\ell})u\|_{L^2(\Omega)} \le 2\sqrt{2} h_\ell |u|_{H^1(\Omega)}$$

is satisfied, where $\Pi_{p,\ell}$ is the H^1 -orthogonal projection to $S_{p,\ell}(\Omega)$.

The approximation property follows using

• standard arguments (for the $h_{\ell}^{-2}M_{\ell}$ part)

$$\blacktriangleright \ \|\underline{u}_{\ell}\|_{\widetilde{K}_{\ell}} = |\mathcal{H}_{\Gamma,\ell} u_{\Gamma,\ell}|_{H^{1}(\Omega)} \leq |u_{\ell}|_{H^{1}(\Omega)} = \|\underline{u}_{\ell}\|_{K_{\ell}} \text{ (for the } \widetilde{K}_{\ell} \text{ part)}$$

Convergence theorem

Theorem ([Hofreither, T., Zulehner 2015])

The two-grid method converges with rate $\frac{C_A C_S}{\nu}$ if $\nu > C_A C_S$ smoothing steps are applied. The constants C_A and C_S do not depend on the grid size h_ℓ and the spline degree p.

The extension to the W-cycle multigrid method is standard.

うして ふゆう ふほう ふほう うらつ

Outline

Preliminaries

Model problem IGA discretization

Multigrid algorithm

Multigrid framework Basis-independent smoother Smoother for one dimension Smoother for two dimensions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Numerical results

Conclusions and Outlook

Matrices from tensor-product splines

The mass matrix has a tensor-product structure:

 $\mathcal{M}_{\ell} = M_{\ell} \otimes M_{\ell}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Matrices from tensor-product splines

The mass matrix has a tensor-product structure:

$$\mathcal{M}_{\ell} = \mathcal{M}_{\ell} \otimes \mathcal{M}_{\ell}$$

The stiffness matrix is the sum of two tensor-product matrices:

$$\mathcal{K}_{\ell} = \mathcal{K}_{\ell} \otimes \mathcal{M}_{\ell} + \mathcal{M}_{\ell} \otimes \mathcal{K}_{\ell}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Matrices from tensor-product splines

The mass matrix has a tensor-product structure:

$$\mathcal{M}_{\ell} = \mathcal{M}_{\ell} \otimes \mathcal{M}_{\ell}$$

The stiffness matrix is the sum of two tensor-product matrices:

$$\mathcal{K}_{\ell} = \mathcal{K}_{\ell} \otimes \mathcal{M}_{\ell} + \mathcal{M}_{\ell} \otimes \mathcal{K}_{\ell}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

► Tensor-product structure can be used for inverting *M*_ℓ, but not for inverting *K*_ℓ

Smoother for two dimensions

$$\begin{split} \widehat{\mathcal{K}}_{\ell,orig} &= \widehat{\mathcal{K}}_{\ell} \otimes M_{\ell} + M_{\ell} \otimes \widehat{\mathcal{K}}_{\ell} \\ &= (h_{\ell}^{-2}M_{\ell} + \widetilde{\mathcal{K}}_{\ell}) \otimes M_{\ell} + M_{\ell} \otimes (h_{\ell}^{-2}M_{\ell} + \widetilde{\mathcal{K}}_{\ell}) \\ &= 2h_{\ell}^{-2}M_{\ell} \otimes M_{\ell} + \widetilde{\mathcal{K}}_{\ell} \otimes M_{\ell} + M_{\ell} \otimes \widetilde{\mathcal{K}}_{\ell} \\ &\approx \underbrace{h_{\ell}^{2}\widehat{\mathcal{K}}_{\ell} \otimes \widehat{\mathcal{K}}_{\ell}}_{\text{tensor-product}} - \underbrace{h_{\ell}^{2}\widetilde{\mathcal{K}}_{\ell} \otimes \widetilde{\mathcal{K}}_{\ell}}_{\text{tensor-product}} \\ &=: \widehat{\mathcal{K}}_{\ell}, \end{split}$$

◆□ > < 個 > < E > < E > E 9 < 0</p>

where $\widehat{K}_\ell = h_\ell^{-1} M_\ell + \widetilde{K}_\ell.$

Let
$$A \in \mathbb{R}^{N \times N}$$
, $B \in \mathbb{R}^{n \times n}$, $P \in \mathbb{R}^{n \times N}$ with full rank. Then:
 $(A - PBP^T)^{-1} = A^{-1} + A^{-1}P(B^{-1} - P^TA^{-1}P)^{-1}P^TA^{-1}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Let
$$A \in \mathbb{R}^{N \times N}$$
, $B \in \mathbb{R}^{n \times n}$, $P \in \mathbb{R}^{n \times N}$ with full rank. Then:
 $(A - PBP^T)^{-1} = A^{-1} + A^{-1}P(B^{-1} - P^TA^{-1}P)^{-1}P^TA^{-1}$

• The inversion of $A = \widehat{K}_{\ell} \otimes \widehat{K}_{\ell}$ can be done using tensor-product structure and solvers for one dimension

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let
$$A \in \mathbb{R}^{N \times N}$$
, $B \in \mathbb{R}^{n \times n}$, $P \in \mathbb{R}^{n \times N}$ with full rank. Then:
 $(A - PBP^T)^{-1} = A^{-1} + A^{-1}P(B^{-1} - P^TA^{-1}P)^{-1}P^TA^{-1}$

► The inversion of A = K
_ℓ ⊗ K
_ℓ can be done using tensor-product structure and solvers for one dimension

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The rest lives only in the boundary layer

Let
$$A \in \mathbb{R}^{N \times N}$$
, $B \in \mathbb{R}^{n \times n}$, $P \in \mathbb{R}^{n \times N}$ with full rank. Then:
 $(A - PBP^T)^{-1} = A^{-1} + A^{-1}P(B^{-1} - P^TA^{-1}P)^{-1}P^TA^{-1}$

- ► The inversion of A = K
 _ℓ ⊗ K
 _ℓ can be done using tensor-product structure and solvers for one dimension
- The rest lives only in the boundary layer
- ► Optimal order: multigrid solver has the same order of complexity as the multiplication with K_ℓ

Convergence theorem

Theorem ([Hofreither, T., Zulehner 2015])

The two-grid method converges with rate $\frac{C_A C_S}{\nu}$ if $\nu > C_A C_S$ smoothing steps are applied. The constants C_A and C_S do not depend on the grid size h_ℓ and the spline degree p.

The extension to the W-cycle multigrid method is standard.

うして ふゆう ふほう ふほう うらつ

Outline

Preliminaries

Model problem IGA discretization

Multigrid algorithm

Multigrid framework Basis-independent smoother Smoother for one dimension Smoother for two dimensions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Numerical results

Conclusions and Outlook

One dimension

р	1	2	3	4	5	6	7	8
$\ell = 10$	22	20	20	21	21	20	20	20
$\ell = 11$	23	20	20	21	20	20	20	20
$\ell = 12$	23	20	20	20	20	20	20	20
р	9	10	12	14	16	18	20	
$\ell = 10$	20	20	20	18	18	17	17	
$\ell = 11$	20	19	19	18	19	18	17	
$\ell = 12$	20	20	19	18	18	18	18	

 $u_{pre} + \nu_{post} = 1 + 1, \ \tau = 0.14$ Stopping criterion: Euclidean norm of the initial residual is reduced by a factor of $\epsilon = 10^{-8}$.

Two dimensions

р	2	3	4	5	6	7	8	9
$\ell = 5$	82	80	75	76	76	73	72	72
$\ell = 6$	83	87	76	74	75	73	72	72
р	10	11	12	13	14	15	16	
$\ell = 5$	70	71	70	68	69	69	66	
$\ell = 6$	70	70	69	68	68	67	65	

 $u_{pre} + u_{post} = 1 + 1$, $\tau = 0.10$ (for $p \le 3$) and $\tau = 0.11$ (for p > 3) Stopping criterion: Euclidean norm of the initial residual is reduced by a factor of $\epsilon = 10^{-8}$.

Outline

Preliminaries

Model problem IGA discretization

Multigrid algorithm

Multigrid framework Basis-independent smoother Smoother for one dimension Smoother for two dimensions

Numerical results

Conclusions and Outlook

Conclusions

(One and) two dimensions

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○
- (One and) two dimensions
- Robust convergence rates, robust number of smoothing steps

- (One and) two dimensions
- Robust convergence rates, robust number of smoothing steps

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

► Optimal complexity in the sense: "as complex as the multiplication with K_ℓ"

- (One and) two dimensions
- Robust convergence rates, robust number of smoothing steps

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- ► Optimal complexity in the sense: "as complex as the multiplication with K_ℓ"
- Rigorous analysis

- (One and) two dimensions
- Robust convergence rates, robust number of smoothing steps
- ► Optimal complexity in the sense: "as complex as the multiplication with K_ℓ"
- Rigorous analysis
- C. Hofreither, S. Takacs and W. Zulehner.

A Robust Multigrid Method for Isogeometric Analysis using Boundary Correction.

ション ふゆ アメリア メリア しょうくの

Submitted (preprint: G+S-Report 33/2105), 2015.

- (One and) two dimensions
- Robust convergence rates, robust number of smoothing steps
- ► Optimal complexity in the sense: "as complex as the multiplication with K_ℓ"
- Rigorous analysis
- C. Hofreither, S. Takacs and W. Zulehner.

A Robust Multigrid Method for Isogeometric Analysis using Boundary Correction.

Submitted (preprint: G+S-Report 33/2105), 2015.

🔋 S. Takacs and T. Takacs.

Approximation error estimates and inverse inequalities for B-splines of maximum smoothness.

Submitted (preprint: arXiv:1502.03733), 2015.

- (One and) two dimensions
- Robust convergence rates, robust number of smoothing steps
- ► Optimal complexity in the sense: "as complex as the multiplication with K_ℓ"
- Rigorous analysis
- C. Hofreither, S. Takacs and W. Zulehner.

A Robust Multigrid Method for Isogeometric Analysis using Boundary Correction.

Submitted (preprint: G+S-Report 33/2105), 2015.

🔋 S. Takacs and T. Takacs.

Approximation error estimates and inverse inequalities for B-splines of maximum smoothness.

Submitted (preprint: arXiv:1502.03733), 2015.

Thanks for your attention!

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 ろんの