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Poisson model problem

Domain Q € R
Given function f € [%(Q)

Find u € H(Q) such that

—Au="f
Ou
%—0

in Q
on 0N



Variational formulation

Domain Q € R
Given function f € L?(Q)

Find u € H'(Q) such that
(u, D)) = (f, 0)12(q)

for all & € HY(Q).
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Spline spaces in one dimension

» Let Q=(0,1)

» My is the uniform subdivision of Q = (0,1) in n, = ng2*
subintervals T; of length hy := ho2=¢ for £ =0,1,2, ...

» Spline space S, () is the space of all spline functions in
Ck(Q), which are piecewise polynomials of degree p on each
subinterval in M.

» Maximum smoothness: S, /() := S, ,—1,¢(Q?)

» Standard B-spline basis: ¢§,1,2(X), cey m‘)( )
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Spline spaces in two and more dimensions

> Let Q = (0,1)¢

» Tensor product B-splines: @fjjmﬁj)(x,y) = ¢g’)£(x)¢g)€(y)

» For Q= (0,1)¢ with d > 1: S, () denotes tensor product
spline space

» More general domains: geometry mapping

» For regular geometry mappings: multigrid for parameter
domain can be used as preconditioner



Discretization
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Discretization

Variational formulation:
Find u; € Sp4(S2) such that

(ue, Ge) (o) = (f, o) 12(q)

for all @, € Sp0(2)

Matrix-vector notation:

Kouy = o
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Multigrid method

One step of the multigrid method on grid level k applied to iterate

Hgo,o) = géo) and right-hand-side f, to obtain 5@1) is given by:

» Apply v smoothing steps
Hgo,m) _ Hﬁo,m—l) + TRé_l(?g . K@Hémm_l))

form=1,...,v.



Multigrid method

One step of the multigrid method on grid level k applied to iterate
Hgo,o) = géo) and right-hand-side f, to obtain 5&1) is given by:

» Apply v smoothing steps
HgO,m) _ Hﬁo,m—l) + TRé_l(?g . K@Hémm_l))

form=1,...,v.
» Apply coarse-grid correction

» Compute defect and restrict to coarser grid
» Solve problem on coarser grid
» Prolongate and add result



Multigrid method

One step of the multigrid method on grid level k applied to iterate
Hgo,o) = Héo) and right-hand-side f, to obtain 5&1) is given by:

» Apply v smoothing steps
Hgo,m) _ Hﬁo,m—l) + TRé_l(?g . K@Hémm_l))

form=1,...,v.
» Apply coarse-grid correction

» Compute defect and restrict to coarser grid
» Solve problem on coarser grid
» Prolongate and add result

If realized exactly (two-grid method):

(1) _

(0v)
U, =4

I KT (- Kkﬂzgoy))

» Standard arguments: convergence of two-grid method =
convergence of the multigrid method (W-cycle)
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Intergrid transfer

» Nested spaces: S, ¢_1(2) C Sp54(2)
» The prolongation I5{1 is the canonical embedding

» Knot insertion algorithm

» The restriction is its transpose: lffl = )7
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Hackbusch-like convergence analysis

Convergence of two-grid method with rate g = %, ie.,

1 0
g — oV, < qlluf — o2,

in matrix notation || 7,5/ ||, < g,

is guaranteed by

HLz/z TZK[ILEQII < Ca (approximation property)
HLg_lpKzSﬂZl/zH < Csv~!  (smoothing property)
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Basis-(in)dependent smoother

» Richardson smoother:
GO = O L (= KO,

e, K=
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Basis-independent smoother

» Richardson smoother (in continuous understanding):

ugO,m) _ Hﬁo,m—l) + TR[l(?g B Keugo’m_l)),

where Rg := Ly is the Riesz isomorphism

Assume that Rg := Ly and that 7 is chosen such that

1

0<1< .
— —1/2 —1/2
1L Kol M2

Then the smoothing property is satisfied for Cs = 77 1.

Proof: Standard eigenvalue analysis.

CACS _ CAT71
v v

Convergence rate: g =
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Basis-independent smoother for one dimension

v

Classical analysis: In L2(Q)

v

Ly = h[2Mg is the properly scaled mass matrix

v

Proofs for standard smoothers (Richardson, Jacobi,
Gauss-Seidel) use that the mass matrix is spectrally
equivalent to its diagonal.

» This is true for B-splines, but deteriorate for increased p.

v

Use Ky = Ly = h;zl\/lg (mass-Richardson smoother)
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Mass-Richardson smoother

» Use Rg =Ly = hZ2Mg
» Condition for choice of T reads as:

lugllk, |ul1(0) <12

sup P T —1
werme\{o} by llugllm,  wees, s@0\foy by lluell 2

and Cs =771

» Need: robust inverse inequality for spline space

» Local Fourier analysis suggests:
Such a robust inverse inequality holds

» Numerical experiments [Hofreither, Zulehner 2014]:
This approach does not work well

» Choose up ¢(x) = ¢I(olg(x) = max{0, hy — x}P and obtain:
Such a robust inverse inequality does not hold
= Ssup...>p :>T§p*2 :>V2p2



Inverse inequality

Theorem ([T., Takacs 2015])
For all ¢ € Ny and p € N,

el < 2V3h, el 2
is satisfied for all uy € gpj(ﬂ), where §p74(0, 1) is the space of all
ug € Sp¢(0,1) whose odd derivatives vanish at the boundary:
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Inverse inequality

Theorem ([T., Takacs 2015])
For all ¢ € Ny and p € N,

|ugl 2 < 2V3h; | ue| 2

is satisfied for all uy € EM(Q), where §p74(0, 1) is the space of all
ug € Sp¢(0,1) whose odd derivatives vanish at the boundary:

a2l+1 82l+1

St Ue(0) = 5 g ue(1) = 0 for all | € No with 2/ +1 < p.

Note: gp%g(Q) has only p (for p even) or p — 1 (for p odd)
dimensions.



Idea: boundary correction

Theorem ([Hofreither, T., Zulehner 2015])

For all ¢ € Ny and p € N,
|ulpn < V2(1 +4V6) by (IluellZ2 + [Hr puer [72)"

is satisfied for all uy = ur ¢ + uy o € Sp¢(Q2), where
ue € SYNQ) C 5p0(9), ur e € (SUUQ)* and Hr g is the
discrete harmonic extension.

Proof: need inverse inequality on §p7g(Q) and robust

approximation error estimate also on S, ;(2)
(cf. [T., Takacs 2015]).
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Boundary correction
Reorder variables such that:

T
K, — < Krre Kiry ) u, — ( Ury )
) “
Kire Ky Uy
Compute the discrete Harmonic extension:

_K//,z Klr,ﬁﬂr,e

Generalized inverse inequality:

lugllie < V2(1+4V6)welle,

= ||Hr,e
Ke

T -1 .
‘ KFF,Z*K:r,eK/l,eKIFJZ

[Hreur @) =

with

<Krr,e - K,FL;K,T}KN,@ 0>
0 )

Rg =1, := hz_zl\/lg + 0

Kp =



Boundary correction
Reorder variables such that:

T
KZ _ ( Krr,f K”—’g > Uy = < HF’Z )
Kire Ky Uy
Compute the discrete Harmonic extension:

_K//,z Klr,éﬂr,e

Generalized inverse inequality:
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Boundary correction
Reorder variables such that:

T
KZ _ ( Krr,f K”—’g > Uy = < HF’Z )
Kire Ky Uy
Compute the discrete Harmonic extension:

_K//,z Klr,éﬂr,e

Generalized inverse inequality:

1L, P KoL P < 2(1 + 4/6)?

= ||Hr,e

u = - )
Hr.e F,K’HI(Q) ‘KrryélePéK”}K,rye

Ko

with

Krro — KT o Ko i Kir e 0)
0 0/

~~

Ky =

Rg =1L, = he_zMg + <

= Smoothing property for 0 < 7 < 271(1 4 41/6) 72



Robust approximation error estimate

Theorem ([T., Takacs 2015])
For each u € H*(Q), each ¢ € Ny and p € N:

(1 = My )ull 2y < 2V2 helulpn(

is satisfied, where N, , is the H'-orthogonal projection to Sy, ;(2).



Robust approximation error estimate

Theorem ([T., Takacs 2015])
For each u € H*(Q), each ¢ € Ny and p € N:

(1 = Mpe)ullizi@y < 22 helulp(q)

is satisfied, where N, , is the H'-orthogonal projection to Sy, ;(2).

The approximation property follows using

» standard arguments (for the hg_zl\/lz part)

> |lugllz, = Hreur i) < luelpnie) = llugllk, (for the K, part)



Convergence theorem

Theorem ([Hofreither, T., Zulehner 2015])

The two-grid method converges with rate % ifv > CaCs
smoothing steps are applied. The constants C4 and Cs do not
depend on the grid size hy and the spline degree p.

The extension to the W-cycle multigrid method is standard.
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Matrices from tensor-product splines

» The mass matrix has a tensor-product structure:

My =M, @ M,

» The stiffness matrix is the sum of two tensor-product
matrices:
ICgZK@@M@—i-Mg@Kg

» Tensor-product structure can be used for inverting My, but
not for inverting Ky



Smoother for two dimensions

I/C\E,orig = Ky @ My+ M, @ K,
= (hzzl\/lg + Rg) @My + My ® (hzz/\//g + /’N(g)
:2hZ2Mg®Mg+Rg®Mg+Mg®Rg
~ hgkg@)kz — thg@)Rg
SN——— SN———
tensor-product  low-rank correction

=: ICy,

where Rg = h[l My + Rg.



Shermann Morrisson Woodburry formula

Let Ac RV*N B e R™n P e R™N with full rank. Then:

(A-=PBPT) 1= Al L A7tP(B™ — PTATIP)IPTAY



Shermann Morrisson Woodburry formula

Let Ac RV*N B e R™n P e R™N with full rank. Then:

(A-=PBPT) 1= Al L A7tP(B™ — PTATIP)IPTAY

» The inversion of A = K; ® K; can be done using
tensor-product structure and solvers for one dimension



Shermann Morrisson Woodburry formula

Let Ac RV*N B e R™n P e R™N with full rank. Then:

(A-=PBPT) 1= Al L A7tP(B™ — PTATIP)IPTAY

» The inversion of A = K; ® K; can be done using
tensor-product structure and solvers for one dimension

» The rest lives only in the boundary layer



Shermann Morrisson Woodburry formula

Let Ac RV*N B e R™n P e R™N with full rank. Then:

(A-=PBPT) 1= Al L A7tP(B™ — PTATIP)IPTAY
» The inversion of A = Rg ® Rg can be done using
tensor-product structure and solvers for one dimension
» The rest lives only in the boundary layer

» Optimal order: multigrid solver has the same order of
complexity as the multiplication with K,



Convergence theorem

Theorem ([Hofreither, T., Zulehner 2015])

The two-grid method converges with rate % ifv > CaCs
smoothing steps are applied. The constants C4 and Cs do not
depend on the grid size hy and the spline degree p.

The extension to the W-cycle multigrid method is standard.
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One dimension

p 1 2 3 4 5 6 7 8
/=10 22 20 20 21 21 20 20 20
f=11 23 20 20 21 20 20 20 20
(=12 23 20 20 20 20 20 20 20

(=10 20 20 20 18 18 17 17
¢=11 20 19 19 18 19 18 17
(=12 20 20 19 18 18 18 18

Vpre + Vpost =1 +1, 7 =0.14
Stopping criterion: Euclidean norm of the initial residual is reduced
by a factor of e = 1078,



Two dimensions

¢=5 82 80 75 76 76 73 72 72
¢=6 83 87 76 74 75 73 T2 72

p 10 11 12 13 14 15 16
¢=5 70 71 70 68 69 69 66
¢=6 70 70 69 68 68 67 65

Vpre + Vpost = 1 +1, 7 =0.10 (for p < 3) and 7 = 0.11 (for p > 3)
Stopping criterion: Euclidean norm of the initial residual is reduced
by a factor of e = 1078.
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Thanks for your attention!
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