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Abstract
We develop a numerical method to design the acoustic 
waveguide shape which has the filtering property to reduce 
the amplitude of frequency response in a given target 
bandwidth. The basic mathematical modeling is given by the 
acoustic wave equation and the related Helmholtz equation, 
and we compute complex resonant poles of the wave guide by 
finite element method with Dirichlet-to-Neumann mapping 
imposed on the domain boundary between bounded and 
unbounded domains. We adopt the gradient method to design 
the desired domain shape using the variational formula for 
complex resonant eigenvalues with respect to the shape 
modification of the domain.



●Introduction
★Two typical roles of wave propagation:
1) Energy transportation: sunlight, electric current, seismic 
wave(ex. earthquake), water wave (ex. tsunami) 

2) Information transmission: speech, music, electromagnetic 
wave (ex. radar, light), underwater acoustic wave(ex. sonar)

★Mathematical description of wave phenomena: 
1) Wave equation (as partial differential equation)
2) Evolution equation (as operator theoretical formulation)

★Three important elements in wave propagation: 
1) Source or Input (Origin)  
2) Filtering or Modulation (with respect to amplitude and phase) 
3) Observation or Output (Influence)

★ Characteristic phenomena: Scattering and Resonance



 Review some analytical and numerical methods for (time-
harmonic) wave propagation and radiation problem, i.e. 
Helmholtz equation

 Application to Wave guide filtering problem for frequency 
response with a typical application to voice generation  

 Characterization of the wave guide via “Frequency response 
function” defined as the peaks of the frequency response 
function

 Shape designing of the wave guide via complex Resonance 
eigenvalues given by the analytic continuation of the frequency 
response function which determine desirable frequency 
response

 Sensitivity analysis based on Variational formula of eigenvalue 
plays an essential role

● Contents of talk in some details with key words 



● Numerical methods for wave propagation problem
★ Mathematical formulation as PDE

c：sound 
velocityWave equation:

Helmholtz equation:

with outgoing radiation condition (due to causality):

In circular or spherical exterior cases, it is the Sommerfeld radiation 
condition:
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Assuming time harmonicity of source term  f and then u : 
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★ Review of the results for obstacle scattering problem     
Consider the evolution equation with self-adjoint operator ܪ in ܮଶ Ω : 

ௗ
ௗ௧
ݑ ݐ ൌ ݑܪ݅ ݐ , ݑ 0 ൌ ݑ in ܮଶ Ω ,	 ܴ ⊃ Ω , Ω:obstacle          

1) Existence of wave operators: ݑ ݐ 	 tends to ݑሺݐሻ of unperturbed 
system: ௗ

ௗ௧
ݑ ݐ ൌ ݑܪ݅ ݐ , ݑ 0 ൌ 	ݑ in ܮଶሺܴሻ. 

The first question we may ask is the existence of  wave operators േܹ :
േܹ ≡ ݏ െ lim

௧→േஶ
exp െ݅ܪݐ :ܬ ,ሻܪݐሺ݅	exp	ܬ ଶሺܴሻܮ → ଶሺΩሻܮ

2) Completeness of wave operators: Rangeሺ ାܹ)=Range(ܹି ).
3) Some properties of scattering operator ܵ ≡ ାܹ* ܹି related to   

resonances for example.
4) Extending the results to the case of wave equation (see [3]).  
References:
[1] Shenk, N. and Thoe, D., Resonant States and Poles of the Scattering Matrix for Perturbations of – , 
Journal of Mathematical Analysis and Applications, 37, 467-491 (1972),
[2] Kuroda, S. T., Scattering theory for differential operators, III; exterior problems,  Spectral Theory and 
Differential Equations. Springer Berlin Heidelberg, 227-241 (1975),
[3] Kako, T., Scattering theory for abstract differential equations of the second order, J. Fac. Sci., Univ. 
Tokyo, Sect. IA 19,  377-392 (1972) .





 







 



2

0

)(
)1(

)'1(

),(
);(
);(

2
))()(( deRu

nkRH
nkRHkukM in

n

),(
);(
);(

2)1(

2)'1(

Ru
DkRH
DkRHk

★ Radiation problem for 2D circular exterior case:

Where                               is the Hankel function of the first kind of order one, 
and’ denotes the derivative w. r. t.  x.
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where                    called the Dirichlet-to-Neumann
mapping, is a function of 
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● Reduction of the problem in a bounded domain

Numerical results  
by Dr. H.M. Nasir

:ݑ sound	pressure
Incident 
plane wave
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★ Radiation problem for 2D cylindrical exterior case

where                           , a function of ./ 222 yD 
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★Time harmonic stationary reduced wave equation
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★ 1D-Webster’s Model

:ݑஶܣ sound	pressure,	ݒ: volume	velocity
ܣ ݔ : area function, 
:ߩ density, ܿ: sound velocity



Let                                           the Sobolev space of order one,
trace operator on 

Find                 such that

where
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● Weak formulation and discretization by FEM
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● Finite dimensional approximation
Let                                 be a finite dimensional subspace of V.00  , hhVVh 

Find such that

Choosing basis              in     , we have a matrix equation
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There are several results on the convergence of approximation. 
One method is based on Mikhlin’s result ( [5] ) for compactly 

perturbed problem using the Fredholm alternative theorem and unique 
continuation property (see, for example Kako [4]).



1. Mathematical modeling of wave guide problem
• Wave propagation phenomena in waveguide or in another unbounded region: Wave 

equation and radiation problem ( based on mathematical scattering theory)

• Time harmonic equation : Helmholtz equation and radiation condition at outer 
boundary or at infinity which is generalized eigenvalue problem related to the 
continuous spectrum 

• Frequency response function and its analytic continuation (resonance phenomena)

2. Discrete approximation method by Finite Element Method (FEM)
• Reduction to the problem in bounded region via the DtN mapping or its 

approximation

• Introduction of approximation space and its basis functions

• Construction of approximation equation by projection method (FEM)

• Numerical algorithm and some theoretical considerations

● Mathematical modeling and Numerical simulation
of wave propagation in wave guide



★ Schematic diagram of open wave guide

Source
Wave guide

Resonator and/or
Filter

Exterior region

Propagation 
into unbounded
open outer region

Fourier mode decomposition 
of periodic pulse wave

Frequency response function with Formants

time harmonic 



Numerical examples in voice generation phenomena through 
vocal tract （ω=70000[Hz], c = 33145[cm/s2])

Radiation 
boundary

Source 
Vocal cord 

part：
Incident 

boundary

Filtering process by
Vocal tract part

Exterior region



Vocal cord 
part：

Incident 
boundary

Radiation 
boundary

with 
plane wave

approximation

Radiation 
boundary

with 
Dirichlet to 
Neumann 
mapping



★ Numerical example of frequency response function and formants 
in the case of voice generation ( DD15 & [4], [8] ) 

Frequency response at 
observation point x：

Formant: Peak of frequency response function 
Empirically, 3 or 4 lowest formants characterize vowels

In the case of vowel /a/
F1

F2
F3

F4 F5



● Computation by using FreeFEM++

Bifurcation phenomena from neutral straight waveguide tube 
with four fundamental regions: R1, R2, R3, R4
(or more)

Neutral : straight tube

Case 1 :region R3 swells (→ F1 up, F2 down)

Case 2 :region R2 swells (→ F1 down, F2 up)

★ FreeFEM++ is an open software having been developed by 
Paris VI group and others: http://www.freefem.org/ff++/

Radiation
boundary



10.0cm 12.0cm

A(x) : area function

Change of frequency response function and 
trajectory of moving resonant eigenvalues
defined in the next slide

Perturbation from neutral 
shape to a swelled one

Numerical example for 1-D case:

● Some observations from numerical results:
Frequency response function and its peaks are influenced 
by the corresponding “resonant poles” in the complex plane



★ Correspondence between formants and 
complex eigenvalues
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Real part of k corresponds to the position of Formant, and 
imaginary part of k to its height or width.

Consider the eigenvalue problem for in 



★ Correspondence between complex eigenvalues 
and frequency response functions

Four lines correspond to four trajectories of 
complex eigenvalues



Example: Changing of wave guide shape from the neutral shape 
to another shape and corresponding trajectory of  complex 
eigenvalues and the frequency response function

Changing of wave guide shape Frequency response function 

Trajectories of complex eigenvalues

There is a good correspondence between frequency response 
function and complex eigenvalues



1. Compute frequency response function by FEM

2. Compute N local maximum points (=formants) of frequency 
response function

3. Search the point that gives the local maximum value of 
|u(z)| in the complex domain starting from the formants

4. Perform line search through the lines parallel to the real axis 
and the imaginary axis  alternatively 

5. Find the pole in the complex domain as the limit point

6. Terminate the procedure when N poles (=complex 
eigenvalues) are found

★ Iteration algorithm for computing complex eigenvalues



★ Example in 2-D case:



Neutral case Case 1

Case 3Case 2

Complex eigenvalues



★ Resonance eigen-values and inverse problem 
related to vocal tract shape and resonance

Theorem(Gårding) Let ߱ (n=1,2,3,…) be resonances of the Webster system: 
ܣ ݔ ௫  ௧ݑ ൌ 0, ܣ ݔ ௧  ௫ݑ ൌ 0, on [0,1] with boundary conditions  0, ݐ ൌ
ߜ 1 and ܣ ݔ ,ሺ1 ሻݐ ൌ ݑܾ 1, ݐ , where 0 ൏ ܾ ≡ ሺ൏ܣ/ሺ1ሻܣ 1ሻ, a constant called 
loss coefficient. 
Then, Im	߱>0, Re	߱  0 for all ݊, and there is an asymptotic expansion

߱~2ିଵ݊ െ 4ିଵ  ݅ܿ  ܿଵ݊ିଵ  ܿଶ݊ିଶ  ⋯
for large ݊ where 4ܿߨ ൌ log	ሺሺ1  ܾሻ ሺ1 െ ܾሻ⁄ ሻ  0.	
Conversely,	given	such	numbers,	they	are	the	vowel	resonances	of	a	tube	with	
loss	coefficient		ܾ ൌ tan hyp	2ߨ c	and	an	infinitely	differentiable	function	ܣሺݔሻ,	
unique	when	a	normalized	so	that	ܣ 1 ൌ 1.

Reference:
[1] Gårding, L., The inverse of vowel articulation, Ark. Mat., 15.1 (1977), 63-86.
[2] Gelʹfand, I.M. and Levitan, M.B., On the determination of a differential equation 
from its spectral function. AMS, 1955.
[3] Sondhi, M. M., and B. Gopinath, Determination of Vocal‐Tract Shape from 
Impulse Response at the Lips, J. Acoust. Soci. America (1971) 1867-1873.
[3] Kirsch, A., An introduction to the mathematical theory of inverse problems; 
Chapter 4.5 The inverse problem, Springer, 1996. 



★ Sensitivity or perturbation analysis of frequency 
response with respect to vocal-tract shape variation:

[15] M. R. Schroeder, Determination of the geometry of the human vocal tract by 
acoustic measurements, The Journal of the Acoustical Society of America, Vol.41, 
Num.4 (1967) pp.1002-1010.

Ehrenfest's theorem: ∆ ܧ ݂⁄ ൌ 0, where ∆ stands for an adiabatic 
perturbation and the subscript ݊	refers to one of the many linear 
oscillator modes of the physical system under consideration. For a 
small perturbation one may write 

ߜ ܧ ݂⁄ െ ߜܧ ݂ ݂
ଶ ൌ 0⁄ , or ߜ ݂ ݂ ൌ⁄ ߜ ܧ ⁄ܧ

i.e., the relative frequency shift is equal to the relative change in 
energy of the oscillator.  Furthermore, Brillouin has shown that 

ܧߜ ൌ െ ܲ ݔ ܣߜ ݔ ,ݔ݀
 with 	ܲ ൌ ଶ ⁄ଶܿߩ2 െ ଶ/2ݒߩ

P. Ehrenfest, Proc. Amsterdam Acad. 19, 576-597 (1916). 
See also Ann. Physik 51, 321-332 (1916); Phil. Mag. 33, 500-513(1917).



★ Perturbation theory and Sensitivity function 
Definition of “sensitivity function” due to Fant (see[5]) :
Relative frequency shift ܨߜ ⁄ܨ 	of resonance frequencies ܨଵ,	ܨଶ,  .etc	ଷܨ
caused by a perturbation ܣߜሺݔሻ ⁄ሻݔሺܣ of area function ܣ ݔ 	is 
referred to as “sensitivity function”

Characterization of “sensitivity function” by Fant & Pauli (see[5]):
Sensitivity function for area perturbation of any ܣ ݔ is equal to the 
distribution with respect to ݔ	of the difference ܧ௫ െ ௫ܧ between 
the kinetic energy ܧ௫ ≡

ଵ
ଶ
ܮ ݔ ܷଶሺݔሻ and the potential energy 

ܧ ≡
ଵ
ଶ
ܥ ݔ ܲଶሺݔሻ normalized by the totally stored energy. 

Here ܷ ݔ is flow, ܲ ݔ is pressure and  ܮ ݔ ≡ ߷ ⁄ሻݔሺܣ is an 
acoustic inductance and ܥ ݔ 	is some parameter function.

[5] Fant, G., The relations between area functions and the acoustic signal, Phonetica, 37
(1980) pp.55-86.



Modifying the above formula, we can derive 
the variational formula for ߱ ൌ ܿ݇ and hence ߱ߜ ൌ ݇ߜܿ : 

Perturb the area function            as  

● Variational formula of complex eigenvalues 
for 1D case

[10] Kako, T. and Touda, K., Numerical method for voice generation problem 
based on finite element method, Journal of Computational Acoustics, Vol. 14, 
No. 1 (2006) 45–56



The first eigenvalue
The second one 

The third one

The fourth one

★Directions calculated by the variational formula put on 
the trajectories which coincide to the tangential directions 



★Strategy: to get a vocal tract shape for a given frequency response 
function by designing the corresponding complex eigenvalues

★ We design the vocal tract shape matching resonant eigenvalues:

N:number of target eigenvalues

Vocal tract shape Initially given 
Complex eigenvalues Initially given

Unknown

Known target

● Vocal tract shape design algorithm

߶: Basic shape functions, 
: design parameters,  M: number of parametersߙ

Then, we have the expression of variation of area function as 
ܣߜ ൌ ∑ ሻெିଵݔ߶ሺߙߜ

ୀ



★ Optimization problem

Minimize:

To solve unconstrained optimization problem
★ Conjugate gradient method with the line search, esp. 
Polak-Ribiere method: only gradient is used (see [17])

(c can be determined by line search.)



★ Algorithm to compute gradient ∇F

Then we can use the variational formula of ߱ߜ for computing .ሻߙሺܨߘ

（		　　　）



●Variational formula of resonance eigenvalues 
for 2 and 3 dimensional cases



In the case of bounded domain and problem is self-adjoint
and hence the eigenvalues are all real, Hadamard has gotten:
Theorem (Hadamard): The first variation of the Neumann
eigenvalues of the Laplacian under domain perturbation is given by

References:
[1] Hadamard, J., Mémoire sur le problème d'analyse relatif à 
l'équilibre des plaques élastiques encastrées, Memories Presentes Par 
Divers Savants A L'Academie des Sciences de L'Institut National de 
France, Vol. 33, 1-126 (1908). 
[2] Joseph, D.D, Parameter and domain dependence of eigenvalues of 
elliptic partial differential equations, Archive for Rational Mechanics 
and Analysis 24, 325-351 (1967).
[3] Zanger, D. Z. , Eigenvalue Variations for the Neumann Problem, 
Applied Mathematics Letters 14 (2001) 39-43.
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Proof: We start up with the following two equations: 
					െΔݑఌ െ ݇ ߝ ଶݑఌ ൌ 0		݅݊	Ωఌ,  ε ∈ ሾ0, ሻ,             (1)ߝ
					െΔݑ	 െ	݇ଶݑ	 ൌ 0					݅݊ Ω, 				ݑ ൌ ݇ ,ݑ ൌ ݇ 0 ,	 (2)
and taking the difference of these equations in Ω ∩ Ωఢ,	
we have
െΔሺݑ െ ఌሻݑ െ ሺ݇ଶݑ െ ݇ሺߝሻଶݑఌሻ ൌ 0		݅݊ Ω ∩ Ωఌ.   (3)

Multiplying this equality by ݑ,	integrating it over Ω ∩ Ωఌ,	making use 
of twice integration of parts and the equality	െΔݑ ൌ ݇ଶݑ , we have

0 ൌ න ݇ ߝ ଶݑఌ െ ݇ଶݑ ݔ݀	ݑ
ஐ∩ஐഄ

	െ න ߘ ఌݑ െ ݑ ∙ ݔ݀	ݑߘ
ஐ∩ஐഄ

	

 ሼ డ
డడ ஐ∩ஐഄ

ఌݑ െ ݑ ሽݑ	ߪ݀

ൌ  ݇ ߝ ଶݑఌ െ ݇ଶݑ ஐ∩ஐഄݔ݀	ݑ
  ఌݑ െ ݑ Δݑ	ݔ݀ஐ∩ஐഄ

	

 ሼ డ
డడ ஐ∩ஐഄ

ఌݑ െ ݑ ሽݑ	ߪ݀ െ  ఌݑ െ ݑ డ
డ
డݑ ஐ∩ஐഄ
ߪ݀

				ൌ  ݇ ߝ ଶ െ ݇ଶ ఌݑݑ ஐ∩ஐഄݔ݀
  ሺడ௨ഄ

డడ ஐ∩ஐഄ
ݑ െ ఌݑ

డ௨
డ
ሻ݀ߪ (4)



We derive the expression of  ௗ
ௗఌ

0 as follows:
First of all, since we set ݇ 0 ൌ ݇, we have 
݇ ߝ ଶ െ ݇ଶ ൌ ሺ݇  ௗ

ௗఌ
0 ߝ  ߧ ଶߝ ሻଶ െ ݇ଶ ൌ 2݇ ௗ

ௗఌ
0 ߝ  ߧ ଶߝ (5)

Using the notation Θ ≡ Ω,	Θఌ ≡ Ωఌ , we have 
			߲ Ω ∩ Ωఌ ൌ 	Γோ ∪ ߲ Θ ∪ Θఌ 	and	߲ Θ ∪ Θఌ ൌ Γ ∪ Γഄ
with	Γ≡ ߲ሺΘ ∪ Θఌሻ ∩ ߲Θ and  Γഄ ≡ ߲ሺΘ ∪ Θఌሻ ∩ ߲Θఌ
and radiation boundary Γோ.

Now we have for the second term of (4)

 ሺడ௨ഄ
డడ ∪ഄ

ݑ െ ఌݑ
డ௨
డ
ሻ݀ߪ ൌ  డ௨ഄ

డ
౸∖డഄ		ݑ
ߪ݀ െ  ఌݑ

డ௨
డ
౸ഄ∖డ,ߪ݀	

(6)

as  డ௨
డ
ൌ 0 on Γ and  డ௨ഄ

డ
ൌ 0 on Γഄ by respective homogeneous 

Neumann boundary condition.
Remark: In the case of homogeneous Dirichlet condition, we have

 ሺడ௨ഄ
డడ ∪ഄ

ݑ െ ఌݑ
డ௨
డ
ሻ݀ߪ ൌ െ ఌݑ

డ௨
డ		౸∖డഄ
ߪ݀   డ௨ഄ

డ
ݑ ౸ഄ∖డߪ݀

.(7)



Furthermore, since 
		݊ሺݔ  Ψߝ ݔ ݊ ݔ ሻ} ∙ ఌݑߘ	 ݔ  Ψߝ ݔ ݊ ݔ ൌ 0	on Γഄ,
we can estimate the first term of the last expression in (6) as follows:

 డ௨ഄ
డ

౸∖డഄ		ݑ
 =ߪ݀ డ௨ഄ

డ
డሺ⋂ஐഄሻݑ
ߪ݀ = ఌݑ∆ ݑ  ఌݑߘ ∙ ⋂ஐഄݔ݀	ݑߘ

= െ݇ሺߝሻଶݑఌݑ  ఌݑߘ ∙ ⋂ஐഄݔ݀	ݑߘ
 = െ݇ሺߝሻଶݑఌݑ  ఌݑߘ ∙ ⋂ஐഄݔ݀	ݑߘ

.

Then, as 	ߝ	tends to zero, we have 
 െ݇ሺߝሻଶݑఌݑ  ఌݑߘ ∙ ⋂ஐഄݔ݀	ݑߘ

=

ߝ  ሼݑߘ ∙ ݑߘ െ ݇ଶݑଶሽΨ ߪ ⋂౸		ߪ݀ 	 ಇ  ಬబሽ
ߧ+ ଶߝ .

Similarly, since ݊ ݔ ∙ ݑߘ ݔ ൌ 0 on Γ, we have
െ ఌݑ

డ௨
డ		౸∖డഄ
ߝ=ߪ݀  ሼݑߘ ∙ ݑߘ െ ݇ଶݑଶሽΨ ߪ ⋂౸		ߪ݀ 	 ಇ  ಱబሽ

ߧ+ ଶߝ .



Consequently, we have 

0 ൌ  ݇ ߝ ଶ െ ݇ଶ ஐ∩ஐഄݔ݀	ఌݑݑ
  ሺడ௨ഄ

డడ ஐ∩ஐഄ
ݑ െ ఌݑ

డ௨
డ
ሻ݀ߪ

ߝ2݇= ௗ
ௗఌ
ሺ0ሻ  ஐݔ݀	ଶݑ  ߝ  ሼݑߘ ∙ ݑߘ െ ݇ଶݑଶሽΨ ߪ డߪ݀

+ ሺడ௨ഄ
డడೃ

ݑ െ ఌݑ
డ௨
డ
ሻ݀ߧ+ߪ ଶߝ .

Using Dirichlet to Neumann mapping on Γோ and its derivative w.r.t. 	݇, 
we have

න ሺ
ఌݑ߲
߲݊డೃ

ݑ െ ఌݑ
ݑ߲
߲݊ሻ݀ߪ ൌ

න ሼሺ
డೃ

ݑఌሻݑሻሻߝሺ݇ሺܯ െ ߪሽ݀ݑሺ݇ሻܯఌݑ

ൌ ߝ
݀݇
ߝ݀ ሺ0ሻ

න
ܯߜ
݇ߜ ݇ ݑ ߪ݀ݑ

డೃ
 ܱሺߝଶሻ.

Here, we have used the complex symmetric property of DtN mapping.



Combining these results and noting the fact  డ
డ
ݑ ൌ(n∙

ݑሻߘ ൌ 0 on	߲Θ	and  hence

=ݑߘ ∙n)‐ݑߘ ݑሻߘ ≡ ݑୄߘ on	߲Θ, 

we finally obtain the result of 
variational formula of resonance eigenvalue:

ௗ
ௗఌ

 ሼ|ఇ఼௨|మିమ௨మሽஏ ఙ ௗఙങ౸

ଶ  ௨మ	ௗ௫ಈ ା ഃಾ
ഃೖ  ௨ ௨ௗఙങೃ



Conclusion
We reviewed some numerical methods for wave guide problem 
using finite element method based on the Helmholtz equation for 
time harmonic wave propagation.

We confirmed the relation between the frequency response 
function and the complex eigenvalues. 

We introduced the variational formula for resonance eigenvalues 
with respect to a small perturbation of  boundary, and confirmed 
the validity of numerical method for this formula.

We considered the optimization problem to coincide with the 
complex eigenvalue, and we proposed an algorithm to design the 
wave guide shape based on this optimization problem using the 
above formulation.



Thank you for your attention!
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