

- Real time simulation for needle trajectory optimization during robotic insertions in deformable objects:
 - 1. Planned trajectory
 - 2. Deformation due to insertion
 - 3. Camera capture the surface of the gel
 - 4. FE Simulation to compute the deformed trajectory

Simulation

Deformable Model

Corotational Model [1]:

Linear relation between stress tensor σ and deformation tensor ϵ (Hooke's law)

Geometrical non linarites filtering: $\sigma = RCR^T \epsilon$

- Beam Model : FEM corotational beam model
- Elasticity and bending stiffness
- Topology is a sequence of segments
- Stiffness matrix is a block-tri-diagonal

Interaction Model:

- Constraints are imposed using Lagrangian Multipliers (LM) [2]
- Re-meshing is avoided

Principle of virtual works: the displacement of a virtual point inside a tetrahedral element is given as a linear relation J of the degrees of freedom q:

$$u_t = J_t \Delta q_t$$
 $u_n = J_n \Delta q_n$

where n denotes the needle and t the deformable object.

Time integration

The dynamic equation of simulated bodies is given by: $M\ddot{q} =$

$$P-F(q,\dot{q})+R(q,\lambda)$$

where M is the inertia matrix, F the internal forces, P the external forces and **R** the constraint forces given by LM λ .

Implicit time integration is used with backward Euler scheme:

- Stability, accuracy, interaction between models
- First order Taylor expression

$$\begin{cases} A_t x_t = b_t + H_t^T \lambda \\ A_n x_n = b_n + H_n^T \lambda \\ \delta = H_n^T x_n + H_t^T x_t \end{cases} \begin{cases} x_t = A_t^{-1}(b_t + H_t^T \lambda) \\ x_n = A_n^{-1}(b_n + H_n^T \lambda) \\ \delta = [\underline{H_n A_n^{-1} H_n^T + H_t A_t^{-1} H_t^T]} \lambda + \delta_0 \end{cases}$$

where $x = \Delta \dot{q}$, *H* is the derivative of the constraints, **A the** implicit fem matrix, $\boldsymbol{\delta}$ the constraint violation and \boldsymbol{W} is known as the Delasus operator

Contribution: Domain Decomposition to compute W in Real Time

 A_n is a bloc-tri-diagonal matrix that can be inverted in real time using Thomas algorithm.[2] A_t is a large matrix

- - The trajectory of the needle is known before the simulation
 - The LM are applied on few degrees of freedom

- Using Sherman Morrison formula $H_t^T A_t^{-1} H_t = H_t^T P (D_2 - U^T D_1^{-1} U)^{-1} P^T H_t$
- $U^T D_1^{-1} U$ is precomputed (far from the trajectory)
- $D_2 U^T D_1^{-1} U$ is inverted at each time step using blas library

Result

Few DOF are impacted by the LM along the planed trajectory:

[1] Michael Hauth and Wolfgang Strasser "Corotational Simulation of deformable Model" Sand 14, D-72076 Tübingen, Germany.

[2] C. Duriez, C. Guebert, M. Marchal and S. Cotin, L. Grisoni "Interactive Simulation of Flexible Needle Insertions Based on Constraint Models. In Medical Image Computing and Computer-Assisted Intervention" In Medical Image Computing and Computer-Assisted Intervention

Size of $\boldsymbol{D}_2 - \boldsymbol{U}^T \boldsymbol{D}_1^{-1} \boldsymbol{U}$