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1 Introduction

Approximating transmission conditions is very important for Optimized Schwarz
Methods (OSM) [2]. For the Algebraic Optimized Schwarz Method (AOSM) [4],
approximations need to be done purely algebraically, leading to a challenging min-
imization problem. A first approach we proposed is to use SPAI [6] to approximate
certain intermediate inverses [3]. The resulting method does however not capture
the classical behavior of optimized Schwarz methods. In [5] another approach is
explored using low-rank approximations, see also [4] for approximate factorization
techniques, and [1, 7] for algebraically formulated transmission conditions. We pro-
pose here a new approach, based on an alternating method. In section 2 we describe
two variants of the alternating method used to approximate the transmission blocks
needed in AOSM: a theoretical one using exact inverse information, and a more prac-
tical one using SPAI approximations. In section 3 we present numerical evidence to
support our findings.
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2 The alternating algorithm to approximate transmission blocks

To describe the alternating algorithm, we consider linear systems of the form

𝐴𝑢 = 𝑓 ,

where the 𝑛 × 𝑛 matrix 𝐴 usually comes from finite element or finite difference
discretizations of a partial differential equation.We further assume that 𝐴 has a block
banded shape of the form

𝐴 =


𝐴11 𝐴12
𝐴21 𝐴22 𝐴23

𝐴32 𝐴33 𝐴34
𝐴43 𝐴44

 , (1)

with 𝐴𝑖 𝑗 blocks of size 𝑛𝑖 × 𝑛 𝑗 , 𝑖, 𝑗 = 1, . . . , 4, and 𝑛 =
∑

𝑖 𝑛𝑖 . The structure of
the matrix 𝐴 corresponds to a two-subdomain decomposition where we assume that
𝑛1 � 𝑛2 and 𝑛4 � 𝑛3, i.e. 𝑛2 + 𝑛3 is related to the overlap size. For generalizations
to more subdomains, see [4, Section 6]. The iteration operators corresponding to the
additive and the multiplicative AOSM are given by

𝑇ORAS = 𝐼 −
2∑︁
𝑖=1

𝑅̃𝑇
𝑖 𝐴̃

−1
𝑖 𝑅𝑖𝐴, and 𝑇ORMS =

2∏
𝑖=1

(𝐼 − 𝑅̃𝑇
𝑖 𝐴̃

−1
𝑖 𝑅𝑖𝐴), (2)

where the classical restriction operators are 𝑅1 := [𝐼 𝑂] and 𝑅2 := [𝑂 𝐼], which
have order (𝑛1 + 𝑛2)𝑛 and (𝑛3 + 𝑛4)𝑛. The transpose of these operators, 𝑅𝑇

𝑖
, are

prolongation operators, and 𝑅̃𝑇
𝑖
are RAS-variants thereof, see [4] for more details.

The matrices 𝐴̃𝑖 are defined by

𝐴̃1 =


𝐴11 𝐴12
𝐴21 𝐴22 𝐴23

𝐴32 𝐴33 + 𝐷1

 , 𝐴̃2 =


𝐴22 + 𝐷2 𝐴23

𝐴32 𝐴33 𝐴34
𝐴43 𝐴44

 , (3)

for which the transmission blocks 𝐷1 and 𝐷2 have to be determined for fast conver-
gence. It has been shown in [4, Theorem 3.2] that the asymptotic convergence factor
of AOSM depends on the product of the two norms

‖ (𝐼 + 𝐷1𝐵33)−1 [𝐷1𝐵12 − 𝐴34𝐵13] ‖2, ‖ (𝐼 + 𝐷2𝐵11)−1 [𝐷2𝐵32 − 𝐴21𝐵31] ‖2.
(4)

The goal is to find 𝐷1 and 𝐷2 to minimize the norms in (4), where the 𝐵 matrices
are given by

𝐵31
𝐵32
𝐵33

 :=

𝐴11 𝐴12
𝐴21 𝐴22 𝐴23

𝐴32 𝐴33


−1 
0
0
𝐼

 ,

𝐵11
𝐵12
𝐵13

 :=

𝐴22 𝐴23
𝐴32 𝐴33 𝐴34

𝐴43 𝐴44


−1 

𝐼

0
0

 . (5)
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This implies that

𝐵13 = −𝐴−1
44 𝐴43𝐵12 and 𝐵31 = −𝐴−1

11 𝐴12𝐵32. (6)

Substituting 𝐵13 and 𝐵31 into (4), we obtain for the convergence factor estimates

‖ (𝐼 + 𝐷1𝐵33)−1 (𝐷1 + 𝐴34𝐴
−1
44 𝐴43)𝐵12‖2,

‖ (𝐼 + 𝐷2𝐵11)−1 (𝐷2 + 𝐴21𝐴
−1
11 𝐴12)𝐵32‖2.

(7)

The optimal choice for the transmission matrices making the norms vanish is there-
fore

𝐷1,opt = −𝐴34𝐴−1
44 𝐴43 and 𝐷2,opt = −𝐴21𝐴−1

11 𝐴12, (8)

which requires however components of the expensive inverses of the large matri-
ces 𝐴11 and 𝐴44 and is thus not very practical.

2.1 Alternating algorithm with exact blocks 𝑩𝒊 𝒋

We start by describing the new alternating algorithm to compute simple diagonal ap-
proximations to the optimal 𝐷1,opt in (8) (the algorithm for approximations to 𝐷2,opt
is analogous):

Initialization: Set 𝐷1,0 := −𝐴34 𝐴̃−1
44 𝐴43, where 𝐴̃

−1
44 is a diagonal SPAI approxi-

mation of 𝐴−1
44 . Due to the sparsity of 𝐴34 and 𝐴43 and the SPAI approximation,

𝐷1,0 is diagonal and almost constant on the diagonal, except for the two endpoints.
For this reason we consider constant diagonal matrices 𝐷1,𝑚 for 𝑚 ≥ 1.

Iteration: For iteration index 𝑚 = 1, 2, . . . , compute

𝑝𝑚 := argmin𝑝∈R ‖
(
𝐼 + 𝐷1,𝑚−1𝐵33

)−1 (
𝑝 𝐼 + 𝐴34𝐴

−1
44 𝐴43

)
𝐵12‖2;

𝐷1,𝑚 := 𝑝𝑚𝐼;
(9)

In (9), we use the exact inverse of the block 𝐴44, and we do so also for the blocks 𝐵12
and 𝐵33. The calculation of these blocks is very expensive which makes this first
approach expensive. In the next subsection we will present a more practical approach
using SPAI approximations for these blocks. Thus the cost in evaluating (9) is reduced
significantly.
Theminimization problems in (9) are scalar problems for 𝑝 ∈ R, but we can obtain

tridiagonal and pentadiagonal alternating approximation algorithms by replacing 𝑝𝐼
in the algorithm above by matrices with tridiagonal and pentadiagonal matrices with
constant diagonals leading to 3 and 5 degrees of freedom, respectively. We will use
the name Alternating SPAI(1) for diagonal approximations, Alternating SPAI(3) for
tridiagonal ones, and Alternating SPAI(5) for pentadiagonal ones.
We next investigate how the alternating algorithm converges to the minimum

obtained by globally minimizing the norm in (7). We consider the model prob-
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Fig. 1 From top left to bottom right: convergence factor estimates for the initial approximation
with SPAI, and then the first three iterations of the new alternating approach.

lem −Δ𝑢 = 𝑓 in a square domain Ω = (0, 1)2, discretized using standard centered
finite differences with mesh size ℎ = 1

𝑁+1 for 𝑁 = 25. We decompose the domain
into two equal overlapping subdomains in the 𝑥 direction with overlap 3ℎ. In order to
visualize the convergence and compare the convergence factor estimates obtained by
the alternating method with the convergence factors of the OO0 and OO2OSM algo-
rithms from [2], we plot them in Fourier space as function of the Fourier variable 𝑘
in the 𝑦 direction, see [3] for more details. We show in Figure 1 the results for the
initial approximation with SPAI, and then the first 3 iterations of our new alternating
algorithm. We see that for the SPAI initial guess, the behavior of the diagonal, tridi-
agonal and pentadiagonal methods is not like for OSM, their convergence for low
frequencies, 𝑘 small, is more like for the classical Schwarz method. This is consistent
with the analysis presented in [3]. With the first correction of our new alternating
procedure however, we can see a great improvement for low frequency behavior, the
methods obtained from the alternating procedure now behave like OSM. The second
and third iterations give further improvements.
In Figure 2, we show on the left the maximum of the two norms in (4) for the

first 8 iterations of the alternating algorithm. The algorithm converges very rapidly
to the global minimization of the norm (4) shown in Figure 2 on the right.
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Iteration Diagonal Tridiagonal Pentadiagonal
0 0.69254 0.651890 0.639410
1 0.26917 0.135600 0.096381
2 0.19344 0.086907 0.067982
3 0.18487 0.079569 0.066584
4 0.18395 0.078645 0.066586
5 0.18385 0.078135 0.066578
6 0.18384 0.078124 0.066579
7 0.18384 0.078123 0.066579
8 0.18384 0.078123 0.066579
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                               Minimum,   diag.= 0.18384,   trid.= 0.078123,   pent.= 0.06649

Classical Schwarz
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Alternating SPAI(3)

Alternating SPAI(5)

OO0

OO2

Fig. 2 Left: Maximum of the two norms in (4) for the first 8 iterations of the alternating algorithm.
Right: Convergence factors for the global minimization of the norm.

2.2 Alternating algorithm using SPAI approximations for 𝑩𝒊 𝒋

The alternating algorithm described above requires the calculation of subblocks
of 𝐴−1

11 and 𝐴−1
44 and the resulting blocks 𝐵𝑖 𝑗 which is expensive. We now consider

SPAI approximations 𝐵̃𝑖 𝑗 for the blocks 𝐵𝑖 𝑗 andwemodify theminimization problem
in (9) of the alternating algorithm to

𝑝𝑚 = argmin
𝑝∈R

‖
(
𝐼 + 𝐷1,𝑚−1𝐵̃33

)−1 (
𝑝 𝐵̃12 − 𝐴34𝐵̃13

)
‖2. (10)

This step thus does no longer require to calculate the inverses 𝐴−1
11 and 𝐴

−1
44 , and the

modified alternating algorithm requires to compute approximations of the blocks 𝐵𝑖 𝑗

only once.
In Figure 3 we present the behavior of the convergence factor corresponding

to each method with respect to the fill-in1 used in the SPAI approximations for the
blocks 𝐵𝑖 𝑗 after 8 iterations. On the top left, we used a diagonal SPAI approximation,
and we see that this is not enough for the alternating procedure to improve the low
frequency behavior toward OSM. On the top right we used a tridiagonal SPAI
approximation and we see that this also does not suffice. In order to obtain good
low frequency behavior like OSM, we need to use sufficient fill-in in the SPAI
approximations for 𝐵𝑖 𝑗 , as we see in the bottom left and right panels of Figure 3.
Note that this is a one time approximation and because of the nature of the SPAI
algorithm we can approximate the columns one by one independently, and thus in
parallel. In the numerical experiments section we present a comparison between
sequential and parallel estimations of 𝐵𝑖 𝑗 .
For the minimization of the linear problems involved in the alternating algorithm

we used the Nelder-Mead algorithm implemented in fminsearch in Matlab. In the
numerical experiments we show that minimizing the norm globally takes more time
compared to the time if we minimize 8 linear problems associated to 8 iterations to
obtain convergence of the alternating algorithm.

1 Here, 𝑖 fill-in means 𝑖 fill-in entries per column are allowed.
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Fig. 3 The behavior of the convergence factor with respect to the fill-in used in the SPAI approxi-
mation of the blocks 𝐵𝑖 𝑗 after 3 iterations.

Note that this minimization process can be performed offline, it is independent
of the solution process when the Schwarz method is running, and “alternating” here
refers to the optimization process, not to the Schwarz method, which can run in
parallel or alternating fashion.

3 Numerical experiments

For our numerical experiments we consider the advection-reaction-diffusion equa-
tion,

𝜂𝑢 − ∇ · (𝑎∇𝑢) + 𝑏 · ∇𝑢 = 𝑓 ,

where 𝑎 = 𝑎(𝑥, 𝑦) > 0, 𝑏 = [𝑏1 (𝑥, 𝑦), 𝑏2 (𝑥, 𝑦)]𝑇 , 𝜂 = 𝜂(𝑥, 𝑦) ≥ 0, with

𝑏1 = 𝑦 − 1
2
, 𝑏2 = −𝑥 + 1

2
, 𝜂 = 𝑥2 cos(𝑥 + 𝑦)2, 𝑎 = 1 + (𝑥 + 𝑦)2𝑒𝑥−𝑦 .

We decompose the unit square domain Ω = (0, 1) × (0, 1) into two subdomains
Ω1 = (0, 𝛽) × (0, 1) and Ω2 = (𝛼, 1) × (0, 1), where 0 < 𝛼 ≤ 𝛽 < 1. Using
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Fig. 4 Convergence of the variousmethods for the advection-reaction-diffusionmodel problem. Top
left: exact 𝐵𝑖 𝑗 . Top right: diagonal SPAI approximations for 𝐵𝑖 𝑗 . Middle left: SPAI approximations
for 𝐵𝑖 𝑗 with 100 fill-in. Middle right: All methods used as preconditioners. Bottom: computational
time to compute the corresponding 𝐵𝑖 𝑗 sequentially and in parallel.

a finite difference method, the corresponding matrix 𝐴 is of size 1024 × 1024, with
a decomposition into two subdomains where the blocks 𝐴11, 𝐴12, 𝐴21, and 𝐴22 are
of size 480 × 480, 480 × 32, 32 × 480, and 32 × 32 respectively.
In Figure 4 we present the error as a function of the iteration index for the

various methods based on the alternating technique. We compare these methods
again with OO0, OO2, and also the optimal Schwarz method obtained with the
choice (8). We see on the top left in Figure 4 that the alternating SPAI methods
are optimized Schwarz methods if we use the exact values of 𝐵𝑖 𝑗 . For alternating
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SPAI(1) in the top right in Figure 4, convergence is not as good, but we need only
0.005034 × 8 = 0.0403 seconds to calculate the parameter 𝑝 where 8 is the number
of iterations for the alternating algorithm to converge to the minimum. In contrast,
we need 4.152525 seconds to calculate the same value of the parameter 𝑝 if we
globally minimize the norm in (4). Using more fill-in in the SPAI approximation,
rapid convergence can be recovered, see the bottom-left of Figure 4. This is more
expensive, but one can calculate the SPAI approximations for the blocks 𝐵𝑖 𝑗 in
parallel. For instance the time needed to calculate the blocks 𝐵𝑖 𝑗 for a 100 fill-in
without using parfor, in Matlab, is 2.540780 seconds, while with parfor we need
only 0.005207 seconds.

4 Concluding remarks

We proposed an alternating SPAI technique to minimize the convergence factor
estimate for the algebraic optimized Schwarz methods from [4]. By alternating be-
tween terms involved in the convergence factor estimate, we reduce the minimization
process to solve linear problems instead of non-linear ones. The required time to cal-
culate the parameters of AOSM is thus reduced drastically, but we have also shown
that one still needs quite accurate SPAI estimates of the terms in the convergence
factor estimate for AOSM in order to obtain good optimized parameters.
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