74

A Computational Environment
based on a Domain Decomposition
Approach

Edgar A. Gerteisen and Ralf Gruber

1 Introduction

With increasing performance of computational facilities, the complexity of geometries
being tackled by scientists and engineers has grown constantly. Simultaneously, the
generation of appropriate meshes has become a subject of increasing interest. One
popular approach to discretize the physical space is the use of structured mesh
blocks which themselves are combined in an unstructured fashion. In FE terminology
this approach can be classified as nonoverlapping structured mortar elements with
matching grid points. Although domain decomposition (DD) methods recently have
received significant attention because of their natural route to be mapped onto
distributed memory architectures, the main benefit of block-structured techniques
arises from combining the advantages of both structured and unstructured approaches.
Interactive tools have been proposed which assist in defining appropriate block
topologies [Sei86, Con], though the difficulty and the amount of engineering time
for topology generation can become considerable. Simultaneously, the interactive
approach militates somewhat against automatization and embedding into parameter
optimization procedures.

The present contribution first describes the parametric representation and the
corresponding automatized topology generation for a composed complex shape. The
system used is a graphically assisted and command language based, which can be
regarded as a mixture between fully automatic and purely interactive. Consequently,
it can be used to prototype the automatization of specific geometry classes or for

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjgrstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org

630 GERTEISEN & GRUBER

combining predefined classes that themselves are already completely automatized
or unstructured representations of the computational space. Aside from the mesh
generation basic generic data structures (DS) are required enabling for communication
of iterative numeric schemes. The application behind the present study is the
computational model of an electrostatic precipitation (ESP) process, which is used
in a variety of technical processes to eliminate particles from exhaust gas. Some of the
important physical properties are the electric field, the space charge, the flow velocity
field, the particle charges, and particle sizes and the velocities of different flow phases
[EKG97], all of which are nonlinearly coupled.

2 Computational Environment

The computational environment is a Problem-Solving Environment that aims at the
realization of a system for cooperative design and development. It can be considered
as a sort of skeleton for embedding applications supplemented by additional, not yet
available or alternative modules introduced by well defined interfaces [GEG95]. Such
an open system is especially demanded for multi-disciplinary applications, in which
knowledge of specialists in different fields has to be combined [EKG97]. A data driven
approach is required for realizing a transparent interaction between different modules
and consequently the usage of a common database is an essential part (see Figure 1)
[Mer95]. Data flow between modules is realized via the database and controlled
by an application-dependent software layer that can be implemented by means of
a command language driven user interface. The information system consists of a
database monitor and a 3D graphics package, and eventually of additional application-
specific postprocessing modules.

3 Geometry

The geometry under consideration consists of a channel (here two planar plates) with
tube-like objects placed at different distances from the channel walls (here center
plane) along the main channel direction (Figure 3). The tube-like objects have prongs
along the tube axe with different angular orientation, the prongs themselves have teeth
which again are defined by several parameters (see Figure 2). Parameters include the
channel width, the position of the objects within the channel, and the parameters for
the tube itself, e.g., diameter of tube, length of prongs, height of prongs, angle between
prongs, etc.

The geometry definition procedure includes several aspects. First, the geometric
surfaces need to be constructed or a given CAD description has to be transferred
into a representation suited for generating a computational mesh. In general, CAD
surfaces have to be reconstructed (condensation, closing of gaps, etc.), which can, in
principle, be carried out with arbitrary high geometry fidelity by means of a point-
wise projection. Additional geometric functionalities are required for generating a
parametric topology and for defining boundary conditions fulfilling a complete and
proper problem description.

COMPUTATIONAL ENVIRONMENT BASED ON DOMAIN DECOMPOSITION

Figure 1 Program environment for the ESP application. Starting from a skeleton
that includes basic functionalities and together with already existing modules,
additional functionalities are added to form the basis for an ESP simulation

environment.

User Interface / Information System

"Intelligent” Software Layer / Control System

—

|

—

| | —— basic functionality |

- SEoM | CHARCE provided by the = MON
1 1 environment 1

g | |
R— MESH R— FLOW already existing R view
A A modules A
A A A
qd d d
g POISSON o PART I added modules o

| Multi-Site Multi-Machine Data and Network Manager
WS Graphical
HPC Cluster ws WS MPM Others

631

632

GERTEISEN & GRUBER

Figure 2 Part of block-structured mesh topology consisting of 380 mesh blocks

(each with 3x3 cells in this illustration) demonstrating the representation of

arbitrary angles between prongs in tube direction, here 135°.

l,’/’
LY
]

Q’
%:;:3
7

2
=
)

;
1
W

-y
lllll= y

Sx
12

NS

7777 7L

U
777
T
i

5

A4
i
@i

)
7

yar4
7
s
S~

e
s

A

7277

- iilll
7

L e L

Geometry Surface Description

building block in tube
direction which incre-
mentsy by 35°

building block in tube
direction which incre-
mentsy by 90°

The basic elements of the command language are described in [MBF+90]. CAD
primitives used for the surface description are create point (cp) and create face (CF).
The create point function provides the basic functionality of defining CAD points and
the create face function enables to generate basic CAD surfaces, which are defined by
a structured set of CAD points in the two index directions. Additional important
functionalities of the script language are control structures, such as “while” and
branching by “if” conditions. It should be mentioned here that parts of the topology
introduced afterwards, specifically the building blocks, need to be anticipated already
during the construction of surface patches.

Topology Generation

First of all a strategy for the topology design has to be developed. The basic geometry
is a rectangular channel. Several of the complicated tube-like structures (Figure 2)
need to be fitted into this base configuration for which hexahedron building blocks are
used (Figure 3). Inside those elementary geometric objects a transition to a circular
tube is defined such that a quantum movement in circular direction of vy = 90° is
rendered possible, simultaneously maintaining matching grid points. The elementary
object is divided further into four substructures in tube direction, two of them for
allowing an arbitrary angle between prongs and one for each prong tooth (Figure 2).

COMPUTATIONAL ENVIRONMENT BASED ON DOMAIN DECOMPOSITION 633

Figure 3 Part of the mesh showing the hexahedron building block around
tube-like structure. Identical domain numbers are activated and the angle variation
between the prongs are causing a movement of the upper part by 90°. Angle of
prongs: left picture = 135°, right picture = 180°.

N

\

A

N
ST

!

7

A
AR

N

\

/

Volumetric objects are created by defining opposite surfaces, again by cp and CF
commands, for each domain. The CSD, create structured domain, command defines a
domain connected by two faces. The structured domain is a CAD element and should
not be mistaken with the structured mesh. A more comprehensive description of the
outlined steps is given in [Ger96]. For the given example, with two tube elements
and two prongs in tube direction activated, a topology consisting of 380 domains is
generated. This number can easily reach the order of several thousand upon parameter
variation.

Boundary Conditions

An important issue is the introduction of boundary conditions (BCs). In fact, the
topology may vary upon parameter variation (see Figure 3) and the definition of BCs
need to vary correspondingly. Therefore, geometric attributes (referring to inflow,
outflow, solid wall, etc.) are placed on each CAD surface, which are transferred to
the structured mortars and interpreted afterwards by the computational modules.
The BCs are introduced within CSD command. The boundary-condition-on-face
commands are embedded in control structures, since they are supposed to branch
upon parameter variation. Additional modules exist for checking the completeness of
the problem definition, e.g., no disjoint internal surface patches exist. All free surface
patches are furnished with proper boundary condition codes.

4 Mesh

The computational mesh is derived by applying curvilinear interpolation within each
CAD volume separately. The mesh module allows also for adaptive mesh generation

634 GERTEISEN & GRUBER

based on a mesh density function [Bon90]. This monitor function is, in general, defined
separately in the discrete space and it resides as an object in the database. It can be
based on a combination of physical properties or on estimates for the discretization
error of a numerical scheme. The adaptation algorithm is based on equidistribution
principle and it applies a one-dimensional r-refinement (redistribution of mesh points
maintaining the structure) along each index direction of a structured mesh block
similar to the work of [DKS80]. However, regularization concepts [And87, CAA8T]
need to be introduced, in order to avoid skewed meshes and discontinuities of the
mesh lines at block interfaces in the first derivatives.

5 Solver Modules

According to the multi-disciplinarity of the considered problem, diverse computational
modules are included in the environment, e.g., finite element, finite volume,
particle transport, characteristic method, each of them requiring a different type of
communication. The cell-centered finite volume flow solver is based on a data structure
of overlapping cells, whereas a master/slave DS appears to be better suited for nodal
based schemes [Ger94]. The communication matrices are derived by a separate module
and saved in the database for the sake of modularity. Alternatively they can be
produced by calls to a specific library.

One example is the finite element solver module that, in the present application, is
used for the computation of the electrical potential. The iterative conjugate gradient
solver has been reimplemented recently to allow for an efficient usage of latest
computer architectures. The system matrix is not completely assembled at the mortar
element interfaces. However, each interface point is treated either as a master or
as a slave and together with the corresponding communication structure the global
matrix vector multiplication and scalar product can be computed properly. Those
are implemented in form of a communication library that can be ported readily to
different hardware architectures. Results on the NEC-SX4 indicate good performance
on emerging vector based parallel architectures, namely 0.9 Gflop/s on one and up to
2.7 Gflop/s on four processing elements of the SX4 vector multiprocessor system, with
a minor parallelization effort by means of directives.

6 Conclusion

A data driven environment based on DD has been presented. The current application
uses structured mortar elements, yet completely unstructured environments already
have been realized [GEGT95]. Automatized parametric topology generation is
rendered possible by an extension language-based mesh generation. The master/slave
DS together with the concept of not completely assembled matrices has proved
effective for vertex based schemes in DD with matching grid points, i.e. it leads
to high modularity and provides identical convergence behavior compared to the
non-decomposed domain. The data driven skeleton described has already been used
for several applications such as laser optimisation, gyrotron, magnetohydrodynamics,
etc. [GEGT95]. The present article is mainly based on the ESP application, which

COMPUTATIONAL ENVIRONMENT BASED ON DOMAIN DECOMPOSITION 635

is demanding because of the multidisciplinary nature of the physical problem. The
unified data representation together with the common database allows for a modular
approach enabling the transparent combination of knowledge in different disciplines
and concurrent program development at different sites.

Acknowledgement

This work has been supported by ABB Corporate Research, CH-Baden/Déattwil. We
are especially grateful for the opportunity to work on a complex industrially relevant
design. The geometry is courtesy of ABB Flikt, S-35187 Vixjo.

REFERENCES

[And87] Anderson D. (1987) Equidistribution Schemes, Poisson Generators, and
Adaptive Grids. Applied Mathematics and Computation 24: 211-227.

[Bon90] Bonomi E. et al. (1990) Astrid: A Programming Environment for Scientific
Applications on Parallel Vector Computers. In Devreese J. and Camp P. V. (eds)
Scientific Computing on Supercomputers II. Plenum Press, New York.

[CAA87] Connett W. C., Agarwal R., and Achwartz A. L. (1987) An Adaptive Grid-
Generation Scheme for Flowfield Calculations. Technical Report ATAA-87-0199,
ATAA 25th Aerospace Sciences Meeting, January 12-15 1987, Reno, Nevada.

[Con] Control Data, ICEM CFD/CAE.

[DKS80] Dwyer H., Kee R.., and Sanders B. (1980) Adaptive Grid Method for Problems
in Fluid Mechanics and Heat Transfer. ATAA Journal 18(10): 1205-1212.

[EKG97] Egli W., Kogelschatz U., and Gerteisen E. (1997) 3D Computation of Corona,
Ion Induced Secondary Flows and Particle Motion in Technical ESP Configurations.
8th Int. Conf. on Electrostatics, 4th-6th June 1997. To appear in the Journal of
Electrostatics.

[GEG'95] Gruber R., Egli W., Gerteisen E., Jost G., and Merazzi S. (1995) Problem-
Solving Environments: Towards an Environment for Engineering Applications.
SPEEDUP Journal 9(1).

[Ger94] Gerteisen E. A. (1994) A Generic Data Structure for the Communication of
Arbitrary Domain Splitted Mesh Topologies. Technical Report CSCS-TR-94-10.
[Ger96] Gerteisen E. A. (1996) Automatized Generation of Block-Structured Meshes

for a Parametric Geometry. Technical Report CSCS/SCSC-TR-96-10.

[MBF*90] Merazzi S., Bonomi E., Flueck M., Gruber R., and Herbin R. (1990)
ASTRID User Manual Rapport GASOV No. 29. EPFL.

[Mer95] Merazzi S. (1995) The MEMCOM user manual (version 6.8), B2000 Data
Access and Data Description Manual. SMR Corporation, Bienne, Switzerland.

[Sei86] Seibert W. (1986) An Approach to the Interactive Generation of Blockstruc-
tured Volume Grids Using Computer Graphics Devices. In Wesseling P. (ed) First
Int. Conf. on Numerical Grid Generation in CFD, volume 29, pages 333-342. Land-
shut, W. Germany, 14th-17th July, 1986.

