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Domain Decomposition Methods

Consider a finite element approximation of, e.g., the equations of linear
elasticity or a self-adjoint scalar elliptic problem.

The domain Ω is subdivided into non-overlapping subdomains
(substructures) Ωi. In between the interface Γ. Each subdomain is the
union of elements of the finite element triangulation.

Two families: the iterative substructuring algorithms, using solvers on
the Ωi, each with thousands of degrees of freedom, and the overlapping

Schwarz methods, using solvers on an overlapping set of subdomains Ω′
i,

often obtained by adding layers of elements to the Ωi.
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The preconditioner of the finite element problem are built from these
solvers and all preconditioners considered also include a coarse, global
solver with a few degrees of freedom for each subdomain. A Krylov space
method - conjugate gradients or GMRES - is always used to accelerate the
convergence.

In the beginning, coarse spaces were not used. Only the continuous
problems were considered and then it unclear what a coarse problem might
be. The algorithms based on overlapping subdomains were considered by
Schwarz (1870), Sobolev (1936), and Babuška (1957).

Algorithms with non-overlapping subdomains were considered in a
Poincaré-Steklov framework by Agoshkov, Lebedev, and Quarteroni and
others. An important early paper is by Dryja (1981), which provides
an optimal preconditioner. The theory, as far as I know, was only for
interfaces without cross points or edges. Therefore, the decompositions
were essentially only into strips.
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The introduction of a second level dates back to the mid-eighties. Four
papers by Bramble, Pasciak, and Schatz (Math Comp 1986-1989) were
crucial for the development of theory of iterative substructuring; these
papers all existed in preprint form by the time of DD1 (January 1987).

In the first of these papers, on problems in two dimensions, the
substructures are triangles and the coarse space the piece-wise linears
on this coarse triangulation; cf. geometric multigrid. There is one local
space for each of the edges of the interface. A

C(1 + log(H/h))2

bound was established for the condition number of the algorithm.
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This result are obtained, subdomain by subdomain. C is therefore
independent of the number of subdomains and the result is also valid
uniformly for any scalar problem

− div(a(x)grad)u(x) = f(x),

where a(x) = ai, x ∈ Ωi where the ai are arbitrary, positive constants.

An important tool is a finite element Sobolev inequality, valid for plane
domains,

‖uh‖
2
L∞(Ωi)

≤ C(1 + log(H/h))‖uh‖
2
H1(Ωi)

.

This bound cannot be improved (Brenner); it is a genuine finite element
result.
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Before discussing the fourth of the BPS papers, it makes sense to look
at the geometry of the decomposition of a domain in three dimensions.
There is an interface Γ containing the finite element nodes which belong
to the closure of at least two subdomains. The interface is decomposed
into faces, edges, and vertices: the nodes on a face F ij belong to a pair of
subdomains Ωi and Ωj, edges and vertices make up the boundary of faces
with edges typically common to at least three subdomains, and vertices are
end points of edges.

Such decompositions make sense even for quite irregular subdomains,
such as those delivered by mesh partitioners, and each of these objects is
defined by an equivalence class of nodes with a common set of subdomain
indices. For many iterative substructuring methods as well as for some
methods based on overlapping decompositions, there are basis functions of
coarse spaces directly associated with these geometric objects.
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The union of the edges and vertices of the interface is the wire basket.
Individual subdomains also have wire baskets.

BPS IV concerns wire basket algorithms. Instead of working with a
conventional coarse space, for which to this day, strong results independent
on the values of the ai have not been derived, the unknowns of the coarse
problem are the average values over the subdomain wire baskets. A full
description of such an algorithm is quite complicated and is not given.

A version of the BPS IV algorithms was developed and analyzed in the
1990 PhD thesis of Barry Smith. Smith also implemented it (SISC 1992)
on parallel computers prior to moving on to the development of PETSc.
He also took the initiative to a joint project with Dryja and W., which
led to the development and analysis of a large number of primal iterative

substructuring algorithms (SINUM 1994).
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The analysis was carried out in an abstract Schwarz framework, which
had its roots in the contribution of Pierre-Louis Lions to DD1. All bounds
are of the form C(1 + log(H/h))2, with a few exceptions, and most are
independent of coefficient jumps. Smith also wrote a fine book with
Bjørstad and Gropp.

It deserves to be mentioned, that there were other relevant contributions
at DD1, in particular work by Glowinski and Wheeler, with algorithms which
resembles one-level FETI methods. The importance of this work has been
overlooked; see, however, Chapter 1 of T. & W.
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By the time of DD2, two-level additive Schwarz methods had been
developed and proven to be optimal and scalable (independent of the
number of subdomains) for problems with constant coefficients; cf. Dryja’s
paper in DD2 proceedings. At first, generous overlap was assumed but the
methods soon turned out to work best with modest overlap. This led to an
analysis of the case of small overlap and the bound

κ(Tas) ≤ C(1 + H/δ),

shown to be best possible by Brenner; see (SISC 1994 & 2002). Already at
the time of DD3, it was realized that these and the iterative substructuring
algorithms could be analyzed in a common framework.
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The two-level overlapping Schwarz methods require two communication
steps per iteration. One of them can be eliminated resulting in restricted

additive Schwarz methods, invented by Cai and Sarkis (SISC 1999). These
algorithms have been studied extensively and they also typically require
fewer iteration steps.

Already at the time of DD1, it was realized that a coarse component,
which provides at least a minimal amount of global transfer of information
across the entire domain, is required to obtain bounds which are independent
of the number of subdomains.
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This comes as no surprise to any student of multigrid. What makes
the two families different, is that only two levels are required for a domain
decomposition method even for very large problems, which limits the number
of communication steps. The great repertoire of coarse spaces adds to this
promise.

While many of the domain decomposition methods have been developed
using exact, Cholesky solvers, there is now an active interest in the
development and analysis of methods based on inexact solvers, such
as multigrid. In parallel, there has been important progress on domain
decomposition methods for more than two levels, in particular by Tu and by
Klawonn and Rheinbach. With the relative cost of communication increasing
with the number of processors of massively parallel computing systems, the
domain decomposition algorithms appear to be quite competitive
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The extension of any domain decomposition developed for scalar elliptic
problems to the equations of linear elasticity requires a modification of the
coarse space to accomodate the larger null space for problems with natural
boundary conditions. There are then six rigid body modes instead of a
single constant. In many cases, this work is relatively routine, see Chapter
8 of T. & W. A successful approach is often to construct an interpolation
operator which reproduces all rigid body modes and which also can be
bounded uniformly or with a factor C(1+ log(H/h)). Examples of this type
of activity is given in two papers by Pavarino and W., (SINUM 2000).

This requirement was formalized by Mandel in terms of the null space

condition (CMAME 1990) and it is also explained well in the book by
Smith, Bjørstad, and Gropp.
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Dual Iterative Substructuring Methods

These important domain decomposition algorithms date back at least
to DD2 and a paper by Bourgat, Glowinski, Le Tallec, and Vidrascu. This
development led to the development of balancing Neumann-Neumann

methods with coarse space components.

An important role in the description and analysis of the Neumann-
Neumann algorithms is played by a family of weighted counting functions
δi, which are associated with the individual ∂Ωi. They are defined for
γ ∈ [1/2,∞) by a sum of contributions from Ωi and its relevant next
neighbors,

δi(x) =

∑
j∈Nx

aγ
j

aγ
i

, x ∈ ∂Ωi,h ∩ Γh,

where Nx is the set of indices j of the subregions such that x ∈ ∂Ωj,h.
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Their pseudoinverses δ†i are defined by

δ†i (x) = (δi(x))−1, x ∈ ∂Ωi,h ∩ Γh.

They provide a partition of unity:

∑
i

RT
i δi

†(x) ≡ 1, x ∈ Γh,

for any Ωi such that ∂Ωi∩∂ΩD = ∅. These functions span the coarse space
of the algorithm. Note that each of them can be written as the sum of
face, edge, and vertex functions associated with the decomposition of the
interface.
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The local space Vi consists of discrete harmonic functions with non-zero
interface values only on ∂Ωi. A scaled Neumann problem given by the
bilinear form

ãi(u, v) = ai

∫
Ωi

∇(δiu) · ∇(δiv)dx,

is used to define the local parts of a hybrid Schwarz method.
C(1 + log(H/h))2 bounds have been established with C independent of
the number of substructures and of jumps in the coefficients across the
interface around (1995). These algorithms have proven very successful and
have been used extensively. They have been modified for linear elasticity.

What is now called one-level FETI methods were introduced by Farhat
and Roux around 1990 and first analyzed by Mandel and Brezina (Math
Comp 1996). The analysis has also been further refined. Instead of
describing these methods, the more recent FETI–DP and BDDC algorithms
will now be considered.
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FETI–DP and BDDC

These more recent methods only lead to positive definite subproblems.
They are defined in terms a set of primal continuity constraints which
are satisfied throughout the iteration. A pair of FETI–DP and BDDC
preconditioned systems have essentially identical spectra if they employ the
same primal constraints. Here is a figure:
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Figure 1: Decomposition of subdomains for a FETI–DP method.

15/18



Olof Widlund DD18

The primal constraints in this case make the values at the subdomain
vertices global. Note that we obtain multiple values at all other nodes on
the interface. The partially subassembled stiffness matrix of this alternative
finite element model is used to define the preconditioners.

In a FETI–DP algorithm, the continuity at the edge nodes is enforced
by using Lagrange multipliers and the rate of convergence is enhanced
by solving Dirichlet problems on each subdomain in each iteration. The
conjugate gradient algorithm is used to find the correct values of the
Lagrange multipliers.

In a BDDC algorithm, continuity is instead restored in each step by
computing weighted averages across the interface. This leads to non-zero
residuals at some nodes interior to the subdomains, and in each iteration,
these residuals are eliminated by using subdomain Dirichlet solves.
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We can thus think of the primal constraints as providing a global
component of these preconditioners.

For problems in three dimensions, primal variables associated with point
constraints alone do not lead to competitive algorithms; this is technically
closely related to the issues raised in early studies of primal iterative
substructuring methods. Instead, or in addition, averages (and moments)
over faces or, preferably edges, should have common values across the
interface.

The selection a small and effective set of primal constraints for elasticity
problems with large jumps in the Lamé parameters has been very challenging,
see Klawonn and W. (CPAM 2006). The resulting recipes have proven very
successful for very difficult problems, see Klawonn and Rheinbach.
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Additional Purposes for Coarse Spaces

In work on incompressible Stokes, almost incompressible elasticity, and
Maxwell’s equation, the choice of coarse spaces require additional care.

By the divergence theorem, a divergence-free extension of boundary
data is only possible if there is a zero net flux across the boundary. If
for a overlapping Schwarz method for almost incompressible elasticity a
coarse component u0 of a given u can be chosen with same net fluxes
across subdomain boundaries, then the remainder, w := u − u0, allow a
divergence free extension and a successful decomposition of w into local
components. These ideas have been explored repeatedly for balancing
Neumann-Neumann, FETI-DP, and BDDC algorithms.

For Maxwell’s equation, curl-free extension are desirable for very similar
reasons. This is being explored currently in joint work by Dohrmann and
W. for problems in two dimensions.
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