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Prologue: overlapping domain decomposition method
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Define local subsapces:
Vi = {v ∈ V : v(x) = 0, ∀x ∈ Ω \ Ωi} ⊂ V ≡ H1

0 (Ω) (1 ≤ i ≤ J)
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Some earlier papers on the THEORY of overlapping
DDM

1 Schwarz 1870
2 Dryja and Widlund 1987
3 Lions 1988 (related: von Neumann 1933)
4 Widlund 1988, T. Mathew (1989)
5 Bramble, Wang, Pasciak and Xu 1991
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General iterative methods

Au = f

An iterative method can be obtained through 3 steps

1 Form the residual: r = f − Auk−1

2 Solve the residual equation Ae = r approximately ê = Br with
B ≈ A−1

3 Update uk = uk−1 + ê
Example. Assume A = (aij) ∈ Rn×n and A = D − L− U. We may take

B = D−1(Jacobi) & orB = (D − L)−1(Gauss-Seidel).
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The method of subspace corrections (MSC)
(Xu, SIAM Review 1992)

Find u ∈ V such that a(u, v) = f (v), ∀v ∈ V .
! (e.g. Au = f ⇔ (Au, v) = (f , v), ∀v ∈ RJ )

Space decomposition: V =
∑

i Vi
! (e.g. RJ =

∑J
i=1{ei})

Successive subspace correction (multilicative Schwarz):
u ← u + ei for i = 1 : J
where ei ∈ Vi solves ai(ei , vi) = f (vi)− a(u, vi) ∀vi ∈ Vi .

! (e.g. Gauss-Seidel: u ← u + (D − L)−1(b − Au))
Parallel subspace correction (additive Schwarz, BPX
preconditioner):

u ← u + B(f − Au), B =
J∑

i=1

IiRi IT
i =

J∑

i=1

RiQi .

! (e.g. Jacobi: u ← u + D−1(b − Au))
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Examples of MSC

1 Jacobi and Gauss-Seidel methods
! interpret simple algorithms in a complicated way!

2 Overlapping domain decomposition methods
! mostly horizontal decomposition with a little bit overlapping: inexact

(but good) subspace solvers
! (historically) inspiring example

3 Nonoverallping domain decomposition methods
! mostly horizontal decomposition with no overlapping: exact

subspace solvers
! one key (nontrivial) issue: construction of coarse spaces

4 Multigrid methods
! mostly vertical decomposition with a lot of overlappings: very

simple subspace solvers (smoothers)
! nontrivial to be viewed as MSC
! interpretation as MSC is one key development in multigrid theory

5 Method of alternating projections
6 Other examples

! Most existing or newly developed algorithms can be viewed as
MSC in some sense (including nonlinear problems, e.g. Korhumber
(obstacle problems))

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 10 / 35



Examples of MSC

1 Jacobi and Gauss-Seidel methods
! interpret simple algorithms in a complicated way!

2 Overlapping domain decomposition methods
! mostly horizontal decomposition with a little bit overlapping: inexact

(but good) subspace solvers
! (historically) inspiring example

3 Nonoverallping domain decomposition methods
! mostly horizontal decomposition with no overlapping: exact

subspace solvers
! one key (nontrivial) issue: construction of coarse spaces

4 Multigrid methods
! mostly vertical decomposition with a lot of overlappings: very

simple subspace solvers (smoothers)
! nontrivial to be viewed as MSC
! interpretation as MSC is one key development in multigrid theory

5 Method of alternating projections
6 Other examples

! Most existing or newly developed algorithms can be viewed as
MSC in some sense (including nonlinear problems, e.g. Korhumber
(obstacle problems))

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 10 / 35



Examples of MSC
1 Jacobi and Gauss-Seidel methods

! interpret simple algorithms in a complicated way!

2 Overlapping domain decomposition methods
! mostly horizontal decomposition with a little bit overlapping: inexact

(but good) subspace solvers
! (historically) inspiring example

3 Nonoverallping domain decomposition methods
! mostly horizontal decomposition with no overlapping: exact

subspace solvers
! one key (nontrivial) issue: construction of coarse spaces

4 Multigrid methods
! mostly vertical decomposition with a lot of overlappings: very

simple subspace solvers (smoothers)
! nontrivial to be viewed as MSC
! interpretation as MSC is one key development in multigrid theory

5 Method of alternating projections
6 Other examples

! Most existing or newly developed algorithms can be viewed as
MSC in some sense (including nonlinear problems, e.g. Korhumber
(obstacle problems))

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 10 / 35



Examples of MSC
1 Jacobi and Gauss-Seidel methods

! interpret simple algorithms in a complicated way!
2 Overlapping domain decomposition methods

! mostly horizontal decomposition with a little bit overlapping: inexact
(but good) subspace solvers

! (historically) inspiring example

3 Nonoverallping domain decomposition methods
! mostly horizontal decomposition with no overlapping: exact

subspace solvers
! one key (nontrivial) issue: construction of coarse spaces

4 Multigrid methods
! mostly vertical decomposition with a lot of overlappings: very

simple subspace solvers (smoothers)
! nontrivial to be viewed as MSC
! interpretation as MSC is one key development in multigrid theory

5 Method of alternating projections
6 Other examples

! Most existing or newly developed algorithms can be viewed as
MSC in some sense (including nonlinear problems, e.g. Korhumber
(obstacle problems))

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 10 / 35



Examples of MSC
1 Jacobi and Gauss-Seidel methods

! interpret simple algorithms in a complicated way!
2 Overlapping domain decomposition methods

! mostly horizontal decomposition with a little bit overlapping: inexact
(but good) subspace solvers

! (historically) inspiring example
3 Nonoverallping domain decomposition methods

! mostly horizontal decomposition with no overlapping: exact
subspace solvers

! one key (nontrivial) issue: construction of coarse spaces

4 Multigrid methods
! mostly vertical decomposition with a lot of overlappings: very

simple subspace solvers (smoothers)
! nontrivial to be viewed as MSC
! interpretation as MSC is one key development in multigrid theory

5 Method of alternating projections
6 Other examples

! Most existing or newly developed algorithms can be viewed as
MSC in some sense (including nonlinear problems, e.g. Korhumber
(obstacle problems))

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 10 / 35



Examples of MSC
1 Jacobi and Gauss-Seidel methods

! interpret simple algorithms in a complicated way!
2 Overlapping domain decomposition methods

! mostly horizontal decomposition with a little bit overlapping: inexact
(but good) subspace solvers

! (historically) inspiring example
3 Nonoverallping domain decomposition methods

! mostly horizontal decomposition with no overlapping: exact
subspace solvers

! one key (nontrivial) issue: construction of coarse spaces
4 Multigrid methods

! mostly vertical decomposition with a lot of overlappings: very
simple subspace solvers (smoothers)

! nontrivial to be viewed as MSC
! interpretation as MSC is one key development in multigrid theory

5 Method of alternating projections
6 Other examples

! Most existing or newly developed algorithms can be viewed as
MSC in some sense (including nonlinear problems, e.g. Korhumber
(obstacle problems))

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 10 / 35



Examples of MSC
1 Jacobi and Gauss-Seidel methods

! interpret simple algorithms in a complicated way!
2 Overlapping domain decomposition methods

! mostly horizontal decomposition with a little bit overlapping: inexact
(but good) subspace solvers

! (historically) inspiring example
3 Nonoverallping domain decomposition methods

! mostly horizontal decomposition with no overlapping: exact
subspace solvers

! one key (nontrivial) issue: construction of coarse spaces
4 Multigrid methods

! mostly vertical decomposition with a lot of overlappings: very
simple subspace solvers (smoothers)

! nontrivial to be viewed as MSC
! interpretation as MSC is one key development in multigrid theory

5 Method of alternating projections

6 Other examples
! Most existing or newly developed algorithms can be viewed as

MSC in some sense (including nonlinear problems, e.g. Korhumber
(obstacle problems))

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 10 / 35



Examples of MSC
1 Jacobi and Gauss-Seidel methods

! interpret simple algorithms in a complicated way!
2 Overlapping domain decomposition methods

! mostly horizontal decomposition with a little bit overlapping: inexact
(but good) subspace solvers

! (historically) inspiring example
3 Nonoverallping domain decomposition methods

! mostly horizontal decomposition with no overlapping: exact
subspace solvers

! one key (nontrivial) issue: construction of coarse spaces
4 Multigrid methods

! mostly vertical decomposition with a lot of overlappings: very
simple subspace solvers (smoothers)

! nontrivial to be viewed as MSC
! interpretation as MSC is one key development in multigrid theory

5 Method of alternating projections
6 Other examples

! Most existing or newly developed algorithms can be viewed as
MSC in some sense (including nonlinear problems, e.g. Korhumber
(obstacle problems))

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 10 / 35



Some examples of convergence analysis

Gauss-Seidel type methods
Domain decomposition

! Original Schwarz alternating iteration (1870)
! P.L. Lions (1987) (J = 2)
! Dryja and Widlund (1991) (additive)
! Bramble, Pasciak, Wang and Xu (1991)

Multigrid
! Fedorenko (1961), Bachvalov (1966)
! Brandt (1976, 1977), Hackbusch (1976), Bank-Dupont (1977),

Nicolaides(1977)
! Braess and Hackbusch (1983)
! Bramble, Pasciak, Wang and Xu (1991)

General framework of MSC and theory
! Xu (1992), SIAM Review
! Xu and Zikatanov (2002), J. of AMS
! Xu and Zikatanov (2005)
! Lee, Wu, Xu and Zikatanov (2005), Math. Comp.

The method of alternating projections ...
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Alternating projection method
Let H be a Hilbert space and Mi ⊂ H be closed subspaces

On the product of two projections: PM2PM1 is a projection if and
only if PM2PM1 = PM1PM2 , furthermore PM2PM1 = PM1∩M2 .

von Neumann (1933):

limk→∞(PM2PM1)
k = PM1∩M2 .

!
!

!
!

!
!

!
!

!"

!
!

!
!

!
!

!
!

!#M1

$ % M2

!w0 = w
!

!
!!!w1

!w2
!

!
!!
!w3

!w4
!

!!
!w5

!w6
!!
!w7!w8

!!
!w9
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Rate of convergence:

‖(PM2PM1)
k − PM1∩M2‖ = [c(M1, M2)]

2k−1

where c(M1, M2) is the cosine of the angle between M1 and M2:

c(M1, M2) = sup
{

|(u, v)|
‖u‖‖v‖ : u ∈ M1 ∩ (M1 ∩M2)

⊥, v ∈ M2 ∩ (M1 ∩M2)
⊥
}

Fact: c(M1, M2) < 1 ⇔ if M1 + M2 is closed. ⇔ uniform
convergence.
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Generalization to more than two subspaces

Given any closed subspaces Mi ,

lim
k→∞

wk = lim
k→∞

(
J∏

i=1

PMi )
kw = P∩J

i=1Mi
w .

If
∑

i Mi is close, then

lim
k→∞

J∏

i=1

PMi )
k = P∩J

i=1Mi
.

Convergence estimate: in terms of “pairwise angles”?
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Works related to MAP

Two subspaces:
! von Neumann (1933)
! N. Aronszjan (1950)
! I. Halperin (1962)

More general results (subspaces > 2, convex sets, etc):
! F. Deutsch (1982, 1983, 1985, 1992)
! S. Kayalar and H. Weinert (1988)
! H. Bauschke and J. Borwein (1996) (SIAM Review)

Most of the existing convergence estimates are in terms of angles
between every pair of subspaces.
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The relationship between MAP and MSC

An auxiliary result: Let Mi ⊂ H and M = ∩J
i=1Mi . Then

M⊥ =
J∑

i=1

M⊥
i

An equivalence result (Xu and Zikatanov 2000)
! Algorithm MAP is equivalent to subspace correction method with

a(·, ·) = (·, ·)H , Ti = Pi and u0 = 0, if w and Mi in Algorithm MAP
and f and Vi in Algorithm MSC are related by
(w , φ)H = f (φ) ∀φ ∈ H and Vi = M⊥

i . One also has that:
u = PV w = P⊥M w , u! = w − w!.
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Convergence estimates for MSC

1 Parallel subspace corrections

(B−1v , v) = infP
i vi=v

∑

i

(R−1
i vi , vi)

or
((BA)−1v , v)A = infP

i vi=v

∑

i

((RiAi)
−1vi , vi)A

2 Successive subspace corrections (SSC)
! Error transfer operator:

u − u! = E(u − u!−1) = . . . = E!(u − u0)

where E = (I − TJ)(I − TJ−1) . . . (I − T1).
! Convergence:‖E‖ < 1?
! Many estimates existed (BPWX-1991, X-1992, . . . )
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A sharp convergence result
Theorem (XU AND ZIKATANOV 2002, J. AMS, 2005, 2007)

‖E‖2
L(V ,V ) ≡ ‖(I − TJ)(I − TJ−1) . . . (I − T1)‖2 =

c0
1 + c0

= 1− 1
K

where T̄i = T ∗i + Ti − T ∗i Ti and, with wi =
∑J

j=i vj − T−1
i vi

c0 = sup
‖v‖=1

infP
i vi=v

J∑

i=1

(Ti T̄−1
i T ∗i wi , wi)

and, with v i =
∑J

j=i+1 vj

K = 1 + c0 = sup
‖v‖=1

infP
i vi=v

J∑

i=1

(T̄−1
i (vi + T ∗i v i), vi + T ∗i v i)

T̄i is SPD on Vi ⇒ c0 > 0 ⇒ ‖E‖L(V ,V ) < 1 ⇒ convergence.

Special case Ti = Pi : K = sup
‖v‖=1

infP
i vi=v

J∑

i=1

‖Pi

J∑

j=i

vj‖2.
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A concise analysis of Schwarz DD method
for −div (a(x)grad u) = f

1 Partition of unity:
∑J

i=1 θi(x) ≡ 1, suppθi ⊂ Ωi ∪ ∂Ω, 0 ≤ θi ≤
1, maxx∈Ω̄i

|∇θi(x)| ≤ c1h−1
0 .

2 L2 projection Q0 : V /→ V0: h−1
0 ‖v −Q0v‖0,Ω + |v −Q0v |1,Ω ≤ c2|v |1,Ω.

3 c0 ≤ Λ1
Λ0

C0 with C0 = C0(c1, c2) independent of aij and J:

J∑

k=0

‖Pk

J∑

i=k+1

vi‖2
a,Ω ≤ ‖v −Q0v‖2

a,Ω +
J∑

k=1

‖(
J∑

i=k+1

θi)(v −Q0v))‖2
a,Ωk

≤ Λ1

(
|v −Q0v |21,Ω +

J∑

k=1

max
x∈Ω̄k

|
J∑

i=k+1

∇θi(x)|‖v −Q0v‖2
0,Ωk

+ |v −Q0v |21,Ωk

)

≤ Λ1C0|v |21,Ω ≤
Λ1

Λ0
C0‖v‖2

a,Ω

Note: convergence rate does not depend on the smoothness
or possible oscillations in aij ! this is also true for multigrid
convergence.
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3 c0 ≤ Λ1
Λ0

C0 with C0 = C0(c1, c2) independent of aij and J:

J∑

k=0

‖Pk

J∑

i=k+1

vi‖2
a,Ω ≤ ‖v −Q0v‖2

a,Ω +
J∑

k=1

‖(
J∑

i=k+1

θi)(v −Q0v))‖2
a,Ωk

≤ Λ1

(
|v −Q0v |21,Ω +

J∑

k=1

max
x∈Ω̄k

|
J∑

i=k+1

∇θi(x)|‖v −Q0v‖2
0,Ωk

+ |v −Q0v |21,Ωk

)

≤ Λ1C0|v |21,Ω ≤
Λ1

Λ0
C0‖v‖2

a,Ω

Note: convergence rate does not depend on the smoothness
or possible oscillations in aij ! this is also true for multigrid
convergence.

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 20 / 35



A concise analysis of Schwarz DD method
for −div (a(x)grad u) = f

1 Partition of unity:
∑J

i=1 θi(x) ≡ 1, suppθi ⊂ Ωi ∪ ∂Ω, 0 ≤ θi ≤
1, maxx∈Ω̄i

|∇θi(x)| ≤ c1h−1
0 .

2 L2 projection Q0 : V /→ V0: h−1
0 ‖v −Q0v‖0,Ω + |v −Q0v |1,Ω ≤ c2|v |1,Ω.

3 c0 ≤ Λ1
Λ0

C0 with C0 = C0(c1, c2) independent of aij and J:

J∑

k=0

‖Pk

J∑

i=k+1

vi‖2
a,Ω ≤ ‖v −Q0v‖2

a,Ω +
J∑

k=1

‖(
J∑

i=k+1

θi)(v −Q0v))‖2
a,Ωk

≤ Λ1

(
|v −Q0v |21,Ω +

J∑

k=1

max
x∈Ω̄k

|
J∑

i=k+1

∇θi(x)|‖v −Q0v‖2
0,Ωk

+ |v −Q0v |21,Ωk

)

≤ Λ1C0|v |21,Ω ≤
Λ1

Λ0
C0‖v‖2

a,Ω

Note: convergence rate does not depend on the smoothness
or possible oscillations in aij ! this is also true for multigrid
convergence.

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 20 / 35



A concise analysis of Schwarz DD method
for −div (a(x)grad u) = f

1 Partition of unity:
∑J

i=1 θi(x) ≡ 1, suppθi ⊂ Ωi ∪ ∂Ω, 0 ≤ θi ≤
1, maxx∈Ω̄i

|∇θi(x)| ≤ c1h−1
0 .

2 L2 projection Q0 : V /→ V0: h−1
0 ‖v −Q0v‖0,Ω + |v −Q0v |1,Ω ≤ c2|v |1,Ω.

3 c0 ≤ Λ1
Λ0

C0 with C0 = C0(c1, c2) independent of aij and J:

J∑

k=0

‖Pk

J∑

i=k+1

vi‖2
a,Ω ≤ ‖v −Q0v‖2

a,Ω +
J∑

k=1

‖(
J∑

i=k+1

θi)(v −Q0v))‖2
a,Ωk

≤ Λ1

(
|v −Q0v |21,Ω +

J∑

k=1

max
x∈Ω̄k

|
J∑

i=k+1

∇θi(x)|‖v −Q0v‖2
0,Ωk

+ |v −Q0v |21,Ωk

)

≤ Λ1C0|v |21,Ω ≤
Λ1

Λ0
C0‖v‖2

a,Ω

Note: convergence rate does not depend on the smoothness
or possible oscillations in aij ! this is also true for multigrid
convergence.

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 20 / 35



A concise analysis of Schwarz DD method
for −div (a(x)grad u) = f

1 Partition of unity:
∑J

i=1 θi(x) ≡ 1, suppθi ⊂ Ωi ∪ ∂Ω, 0 ≤ θi ≤
1, maxx∈Ω̄i

|∇θi(x)| ≤ c1h−1
0 .

2 L2 projection Q0 : V /→ V0: h−1
0 ‖v −Q0v‖0,Ω + |v −Q0v |1,Ω ≤ c2|v |1,Ω.

3 c0 ≤ Λ1
Λ0

C0 with C0 = C0(c1, c2) independent of aij and J:

J∑

k=0

‖Pk

J∑

i=k+1

vi‖2
a,Ω ≤ ‖v −Q0v‖2

a,Ω +
J∑

k=1

‖(
J∑

i=k+1

θi)(v −Q0v))‖2
a,Ωk

≤ Λ1

(
|v −Q0v |21,Ω +

J∑

k=1

max
x∈Ω̄k

|
J∑

i=k+1

∇θi(x)|‖v −Q0v‖2
0,Ωk

+ |v −Q0v |21,Ωk

)

≤ Λ1C0|v |21,Ω ≤
Λ1

Λ0
C0‖v‖2

a,Ω

Note: convergence rate does not depend on the smoothness
or possible oscillations in aij ! this is also true for multigrid
convergence.

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 20 / 35



Outline

1 Prologue: overlapping domain decomposition method

2 Convergence analysis for overlapping DDM

3 The method of subspace correction: framework and theory

4 Method of alternating projection

5 Interpretation of MG as the method of subspace correction

6 On problems with strongly discontinuous jumps

7 Auxiliary space method — the Method of Auxiliary-space correction

8 Epilogue

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 21 / 35



Interpretation of MG as MSC
My first attempted project (1986) on multigrid analysis:

For −∇ · (a(x)∇u) = f with discontinuous coefficient a (in two
dimensions), prove (or disprove) that the multigrid converges
uniformly with respect to both mesh parameters and jump size (in a)

(Final completion: 2007!)

Observations and facts:
1 Numerical examples (2D) indicate the convergence is indeed

uniform
2 Earlier convergence techniques all depend on elliptic regularity,

which can not be applied here because of lack of regularity
(uniform with respect to jumps)

3 A completely new theory is needed
4 First key (historic) step: interpreted MG (originally always defined

by recursion) as an MSC
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Regularity-free theory for multigrid methods

(Bramble, Pasiak, Wang and Xu 1991) Using the framework and
theory of MSC, it is possible to analyze multigrid convergence with little
or without any regularity. As a result, we can analyze:

locally refined grids (including bisection refinements)
discontinuous coefficients

A multilevel norm equivalence theory (v! = (Q! −Q!−1)v )

‖v‖2
H1(Ω) !

∞∑

!=1

‖v!‖2
H1(Ω) !

∞∑

!=1

h−2
! ‖v!‖2

L2(Ω)

and

(−∆)s !
∞∑

!=1

h−2s
! (Q! −Q!−1).
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On problems with strongly discontinuous jumps

1 Nonoverlapping DD methods are known to be very robust with
discontinuous jumps with construction of “exotic” coarse spaces

! Toselli and Widlund book (2005), Xu and Zou (1998)
2 It has been a long time open problem (in 3D) weather multigrid

methods are robust with respect to jumps
! Xu and Zhu 2007: Multigrid methods (and overlapping DD, without

using special coarse spaces) may not be robust w.r.t. jumps as an
iterative method by itself, but it is robust if it is used as a
preconditioner together with PCG method!

3 A more general question: robust iterative methods for nearly
singular problems (Lee, Wu, Xu and Zikatanov 2005-7, see my
talk tomorrow)
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Condition number or “effective condition number”?

V-cycle multigrid (and standard overlapping Schwarz-DD) gives a
deteriorating condition number, but robust effective condition
number:

λN

λm0

, λmin = λ1 ≤ λ2 ≤ . . . ≤ λN = λmax

(m0 = number of jumps)
When PCG is applied, condition number is not always a good
measure.
For nonoverlapping DD methods, exotic coarse spaces may be
much simplified to still have robust “effective condition number”

(see my talk tomorrow)
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Auxiliary space method
(Xu 1996)

u ∈ V (Hilbert space) : a(u, v) = f (v) ∀v ∈ V .

Consider the following product space

V̄ = V ×W1 × · · · ×WJ , (1)

with the inner product: ā(v̄ , v̄) := s(v0, v0) +
∑J

j=1 āj(wj , wj).
Here W1, . . . , WJ , J ∈ N are auxiliary (Hilbert) spaces endowed with
inner products āj ·, ·), j = 1, . . . , J.
With Πj : Wj /→ V , we have the auxiliary space preconditioner:

B = S−1 +
J∑

j=1

Πj Ā−1
j Π∗j
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The space V itself presents as a component of V̄ is equipped with an
inner product s(·, ·) different from a(·, ·). The operator S : V /→ V
induced by s(·, ·) on V is usually called the smoother.
The auxiliary preconditioner admits the following estimate:

κ(BA) ≤ c2
0(c2

s + c2
1 + · · · + c2

J ) .

where ‖Πjwj‖A ≤ cj āj(wj , wj)
1
2 , wj ∈ Wj ,

‖v‖A ≤ css(v , v)
1
2 ∀v ∈ V , and for v ∈ V , ∃ v0 ∈ V and wj ∈ Wj s. t.

v = v0 +
∑J

j=1 Πjwj and

s(v0, v0) +
J∑

j=1

āj(wj , wj) ≤ c2
0‖v‖2

A ,

(related) fictitious domain (space) methods: see Glowinski’s talk

Jinchao Xu (Penn State University) Subspace correction Juresalum January 2008 29 / 35



Example 1: “nearby” auxiliary space
(use structured grid to precondition unstructured grid)

J. Xu, The auxiliary space method and optimal multigrid
preconditioning techniques for unstructured grids, Computing, Vol.
56, pp 215-235, 1996

W1: finite element space on a (auxiliary) structured grid.
Other relevant works:

Nepomnyaschikh 1992, Bramble and Pasciak 1996, Chan, Smith and Zou 1996, Brenner 1996
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Example 2: “far-away” auxiliary spaces

R −−−−−−→ C∞
grad−−−−−−→ C∞ curl−−−−−−→ C∞ div−−−−−−→ C∞ −−−−−−→ 0

??yΠ
grad
h

??yΠcurl
h

??yΠdiv
h

??yΠ0
h

R −−−−−−→ Hh(grad )
grad−−−−−−→ Hh(curl )

curl−−−−−−→ Hh(div )
div−−−−−−→ L2

h −−−−−−→ 0

Auxiliary space preconditioner for H(curl) system (Hiptmair and Xu
2006)

Bcurl
h = Scurl

h + Πcurl
h




Bgrad

h 0 0
0 Bgrad

h 0
0 0 Bgrad

h



 (Πcurl
h )T + grad Bgrad

h (grad )T

Note: Π = grad is a much more non-trivial than the usual “interpolation” operator.
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Auxiliary space preconditioner for H(div) system (Hiptmair and Xu
2006)

R −−−−−−→ C∞
grad−−−−−−→ C∞ curl−−−−−−→ C∞ div−−−−−−→ C∞ −−−−−−→ 0

??yΠ
grad
h

??yΠcurl
h

??yΠdiv
h

??yΠ0
h

R −−−−−−→ Hh(grad )
grad−−−−−−→ Hh(curl )

curl−−−−−−→ Hh(div )
div−−−−−−→ L2

h −−−−−−→ 0

Bdiv
h = Sdiv

h + Πdiv
h Bgrad

h (Πdiv
h )T

+ curl Scurl
h (curl )T + (Πdiv

h curl )Bgrad
h (Πdiv

h curl )T

Note: Π = curl or Πdiv
h curl is a much more non-trivial than the usual “interpolation” operator.
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Concluding remarks

The Method of subspace correction (MSC) is a general
algorithmic and theoretical framework of general iterative methods
for (linear as well as nonlinear) problems.
Using MSC framework, relationship and difference between
different algorithms can be easily understood.
It provide a general designing guideline of iterative algorithms
The method of alternating projection (MAP) is equivalent to an
MSC (in its orthogonal component)
By (mathematically) reformulating the multigrid method into an
MSC, a new type of convergence theory has been developed for
multigrid convergence analysis that does not require elliptic
regularity (which are essential in earlier theories) and can be
applied to problems such as locally adapted grids and problems
with rough coefficients
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Concluding remarks (cont.)

Within MSC, robust iterative methods can be developed for nearly
singular systems

For problems with strongly discontinuous coefficients,
! Multigrid can be made robust with PCG
! Exotic coarse spaces for nonoverlapping DD may be simplified

A more general framework: the method of auxiliary-space
correction

! auxiliary spaces can be quite different from the original space
! (practical but theoretically provable) algebraic multigrid methods

have been developed for various applications (for H(grad)
[Grasedyck-Xu], H(curl)/H(div)[Hiptmair and Xu]).
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