

Heterogeneous DD - An overview

Heterogeneous DD: Motivations

1. Induced by Mathematical Models

- Advection diffusion / advection
- Exterior aerodynamics: Euler/compressible NS, Incompressible NS/potential
- Maxwell in heterogeneous media

2. Geometrical Multiscale (ex. 3D-1D, 3D-0D)

- Blood flow: modeling the whole circulatory system
- Environment (river wide water bodies)
- Semiconductor devices (electronic circuits)

3. Multiphysics

- Fluid structure interaction (FSI) Aerodynamics Dam / reservoirs Blood / vessel wall
- Surface / subsurface flows

1. Non-overlap / overlap

2. Treatment of interfaces

• Interface matching (physically driven: conservation principles, equilibration of solution and "stresses")

- Asymptotics on critical physical parameter (e.g., Reynolds, magnetic/electric conductivity,...)
- Asymptotics on variational solution
- Control (distributed vs boundaries), virtual control

HDD INDUCED BY MATHEMATICAL MODELS

HDD (Heterogeneous Domain Decomposition) ON NON-OVERLAPPING SUBDOMAINS

1.Abstract Setting2.Advection-Diffusion3.Navier-Stokes/Oseen

An abstract setting

Consider two *different kind* of boundary value problems within two disjoint sub-regions find u_1 : $L_1 u_1 = f_1 in \Omega_1$ find u_2 : $L_2u_2 = f_2$ in Ω_2 The unknowns u_1 and u_2 should satisfy proper matching conditions, say $\Phi(u_1) = \Phi(u_2) \text{ on } \Gamma_1$ $\Psi(u_1) = \Psi(u_2) \text{ on } \Gamma_2$

with Γ_1 and Γ_2 suitable subsets of the interface Γ

(Gastaldi-Q., DD3 (1989), Q.- Valli (1999))

 $u_1 = u_2$ on Γ_D ,

 $\phi_1 = \phi_2$ on Γ .

where ϕ are the normal flux

 Ω_1

MODEL REDUCTION by

VIRTUAL CONTROL on OVERLAPPING DOMAINS

(distributed or boundary control)

(R.Glowinski, O.Pironneau, JLLions)

The original problem:

$$L_2 u = f \text{ in } \Omega \subset \mathbb{R}^d, \ d = 1, 2$$
$$u = g \text{ on } \partial \Omega$$

with $L_2 u := -\nu \Delta u + \operatorname{div}(\mathbf{b}u) + b_0 = -\nu \Delta u + L_1 u$

The **heterogeneous** coupling:

 $\begin{cases} L_1 u = f \text{ in } \Omega_1 \\ u_1 = \lambda_1 \text{ on } S_{1,D}, \end{cases} \begin{cases} L_2 u = f \text{ in } \Omega_2 \\ u_2 = \lambda_2 \text{ on } S_2, \end{cases} \begin{cases} \lambda_1, \lambda_2 \\ \text{Virtual controls} \end{cases}$

 L^2 - control: solve

$$\inf_{\lambda_1,\lambda_2} J(\lambda_1,\lambda_2)$$

with
$$J(\lambda_1, \lambda_2) := \frac{1}{2} \int_{\Omega_1 \cap \Omega_2} (u_1(\lambda_1) - u_2(\lambda_2))^2 d\Omega$$

Lemma. If all data are smooth enough and if $\mathbf{b} \cdot \mathbf{n} \neq 0$ on $\Sigma \subseteq \partial(\overline{\Omega_1 \cap \Omega_2}) \cap \Gamma$, then $\inf_{\lambda_1,\lambda_2} J(\lambda_1,\lambda_2)$ admits a solution.

Theorem. If we set $\phi(\nu) = \inf_{\lambda_1, \lambda_2} J(\lambda_1, \lambda_2)$ and if we let $\nu \to 0$, all other data being fixed, then $\phi(\nu) \to 0$ as $\nu \to 0$.

(Gervasio, J.-L. Lions, Q., 2001)

REDUCING COMPLEXITY BY GEOMETRICAL MULTISCALE

The vascular structures of living tissues feature different scales (branching)

(C.D'Angelo)

The 1D-3D model problem

 $\mathbf{S2}$

The simplest situation: *steady flow*.

 $\begin{array}{c} p_{\mathsf{t}}: \Omega \to \mathbb{R} \text{ blood pressure in the tissue (3D)} \\ p_{\mathsf{V}}: \Lambda \to \mathbb{R} \text{ blood pressure in the vessel (1D)} \\ \phi: \Lambda \to \mathbb{R} \text{ flow rate from the vessel to the tissue (exchange term)} \end{array}$

$$\begin{cases} -\nabla \cdot (k_{t} \nabla p_{t}) - \phi \delta_{\Lambda} = 0 & \text{in } \Omega, \\ -\frac{d}{ds} (k_{V} \frac{d}{ds} p_{V}) + \phi = 0 & \text{in } \Lambda, \end{cases}$$

+ boundary conditions (3D: homogeneous Neumann, 1D: Dirichlet) Notice the *measure term* in the 3D equation (Dirac measure concentrated on the vessel)

Blood flow and oxygen transport (brain)

Circle of Willis

Oxygen transport and reaction in the tissue

Blood pressure in the main vessels

Geometrical multiscale in circulatory system

Local (level1): 3D flow model

Global (level 2):

1D network of major arteries and veins

Global (level 3): 0D capillary

network

Geometrical Multiscale Model

3D-1D for the carotid: pressure pulse

HDD FOR MULTIPHYSICS

Surface-Groundwater Flows

Biochemical Transfer in Artery Walls

Two-phase flow equations

$$\begin{array}{l} \begin{array}{l} \text{Air}\\ \text{Phase}\\ \end{array} & \begin{array}{l} \frac{\partial(\rho_a u_a)}{\partial t} + \nabla \cdot (\rho_a u_a \otimes u_a) - \nabla \cdot T_a(u_a, p_a) = \rho_a g\\ & \nabla \cdot u_a = 0 \end{array} \end{array}$$

$$\begin{array}{l} \text{Interface}\\ \text{Conditions}\\ \end{array} & \begin{array}{l} u_a = u_w \quad \text{on } \Gamma\\ T_a(u_a, p_a) \cdot n = T_w(u_w, p_w) \cdot n + \kappa \sigma n \quad \text{on } \Gamma \end{array}$$

$$\begin{array}{l} \frac{\partial(\rho_w u_w)}{\partial t} + \nabla \cdot (\rho_w u_w \otimes u_w) - \nabla \cdot T_w(u_w, p_w) = \rho_w g\\ & \nabla \cdot u_w = 0 \end{array}$$
Water Phase \\ \nabla \cdot u_w = 0 \end{array}

Multiphysics in Sailing Yachts

Multiphysics in the circulatory system

Fluid-vessel mechanical interaction

Blood-flow equations:

$$\frac{\partial \mathbf{u}}{\partial t}|_{\hat{\mathbf{x}}} + \operatorname{div}(\mathbf{u} \otimes (\mathbf{u} - \mathbf{w}) - \frac{1}{\rho^f} \mathsf{T}(\mathbf{u}, p)) = 0 \text{ in } \Omega_f(t)$$
$$\operatorname{div} \mathbf{u} = 0 \text{ in } \Omega_f(t)$$

Vessel equation:

$$\frac{\partial^2 \eta}{\partial t^2} - \operatorname{Div}(\sigma(\eta)) = f(\eta) \text{ in } \Omega_s$$

Coupling equations:

$$\sigma(\eta) \cdot \mathbf{n} = \mathsf{T}(\mathbf{u}, p) \cdot \mathbf{n}$$
 on Γ
 $\mathbf{u} = \frac{\partial \eta}{\partial t}$ on Γ

Flowfield and vessel deformation

1. Steady Problems

- Fixed point
- Substructuring based
- Steklov-Poincaré based
- Optimal "Fourier" algorithms (Nataf, Halpern, Gander, Japhet)
- CG + adjoint problem in control approaches

2. Unsteady Problems

- Monolithic
- Explicit
- Implicit + subiterations / DD
- Semi-implicit: differential / algebraic

Steklov-Poincare' equation

$$SP_f(\lambda) + SP_s(\lambda) = 0$$

Construction of the Steklov-Poincare' (Dirichlet-to-Neumann) maps SP_f and SP_s:

$$\lambda \to Fl(\lambda, \mathbf{u}, p; \mathbf{v}) = 0 \to SP_f(\lambda) = \sigma_f(\mathbf{u}, p) \cdot \mathbf{n}_f$$

$$\lambda \to St(\eta, \lambda; \mathbf{v}_0^s) = 0 \to SP_s(\lambda) = \sigma_s(\eta) \cdot \mathbf{n}_s$$

Note: here the St solver takes a displacement as bc on the interface.

Linear Steklov-Poincaré equation

Consider the problem

find I in X: SI = c

where S:X to X' is a linear invertible continuous operator, such that

$$S = S_1 + S_2$$

lf

S₂ is continuous and coercive
S₁ is continuous and non-negative, then, for all l⁰ in X and for all 0<q<q*, the sequence

$$I^{k+1} = I^{k} + q S_{2^{-1}}(C - S I^{k})$$

converges in *X* to the solution I.

(Q. and Valli (1999))

A Demonstration of Mathematical Techniques, II

Nonlinear Steklov-Poincaré equation

Consider the problem

```
find \lim X : S_1(1) + S_2 | = c
```

where $S_1: X a X'$ is nonlinear and $S_2: X a X'$ is linear.

lf

- *S* is strongly monotone in *X*
- S_2 is continuous and coercive
- S_1^- is Lipschitz continuous,

then, the solution is unique and for all I^0 in X and for all $0 < q < q^*$, the sequence

$$|^{k+1} = |^{k} + q S_2^{-1} (c - S |^{k})$$

converges in X to the solution I.

(H.Berninger (2007))

(proof based on Banach's fixed point Theorem)

A Demonstration of Mathematical Techniques, III

Newton / fixed-point techniques

Consider the nonlinear problem

```
find \lim X : S(I) = 0
```

where S:X a Y is a nonlinear operator.

Let I^0 be "close enough" to the solution I in X.

lf

- S has continuous second derivative in a suitable closed ball X_0 centered in I^0
- the linear operator $S'(I^0)^{-1}$ exists and is continuous
- $|| S'(p)^{-1} S(p)^{-1} || < C_1$
- $|| S'(x)^{-1} S''(x) || < C_2 \text{ in } X_0$
- $C_1 C_2 < 1/2$,

then, the Newton method

$$|^{k+1} = |^{k} - S'(k)^{-1} S(k)$$

converges in X_0 to the solution I.

(Kantorovic (1948))

