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Heterogeneous DD: Motivations

1. Induced by Mathematical Models

2. Geometrical Multiscale (ex. 3D-1D, 3D-0D)

3. Multiphysics

• Advection diffusion / advection
• Exterior aerodynamics: 
    Euler/compressible NS, 
     Incompressible NS/potential
• Maxwell in heterogeneous media  …..

• Blood flow: modeling the whole circulatory system
• Environment (river – wide water bodies)
• Semiconductor devices (electronic circuits) ….

• Fluid structure interaction (FSI)
    Aerodynamics
    Dam / reservoirs
    Blood / vessel wall 
• Surface / subsurface flows …..



GEOMETRIC
PRE-

PROCSSING

MODEL
VALIDATION

OUTCOME

DD18, Jerusalem, 16 Jan 2008

Mathematical Approaches

1. Non-overlap / overlap

2. Treatment of interfaces

• Interface matching (physically driven: conservation
principles, equilibration of solution and “stresses”)

• Asymptotics on critical physical parameter (e.g.,
Reynolds, magnetic/electric conductivity,…)

• Asymptotics on variational solution

• Control (distributed vs boundaries), virtual control
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HDDHDD
INDUCED BY MATHEMATICAL MODELSINDUCED BY MATHEMATICAL MODELS
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Compressible Navier-Stokes equations

Neglecting
nonlinear
terms and
time

Full potential equation

Considering the
fluid as
irrotational

Compressible Euler equations

Neglecting
viscous effects

Incompressible Navier-Stokes equations

Neglecting
compressibility
effects

Laplace equation

Considering the
fluid as irrotational

Model  hierarchy

        in CFD
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HDD HDD (Heterogeneous Domain Decomposition)(Heterogeneous Domain Decomposition)

ON NON-OVERLAPPINGON NON-OVERLAPPING

SUBDOMAINSSUBDOMAINS

1.Abstract Setting1.Abstract Setting

2.Advection-Diffusion2.Advection-Diffusion

3.Navier-Stokes/Oseen3.Navier-Stokes/Oseen

Ω1

L1(u1)=f1

Ω 2

L2(u2)=f2

Γ
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Heterogeneous DD (mathematically induced)

Consider two different kind of boundary value problems
within two disjoint sub-regions

An abstract setting

find

find

The unknowns
proper matching conditions, say

and should satisfy

with         and          suitable subsets of the interface
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HDD for Advection-Diffusion

The heterogeneous coupling:

(Gastaldi-Q., DD3 (1989), Q.- Valli (1999))
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            MODEL REDUCTION byMODEL REDUCTION by

            VIRTUAL CONTROL on  VIRTUAL CONTROL on
    OVERLAPPING DOMAINS    OVERLAPPING DOMAINS

            (distributed or boundary control)(distributed or boundary control)
        (R.Glowinski, O.Pironneau, JLLions)

Ω1

Ω2

S2

S1
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Boundary control

The original 
problem: 

with

The heterogeneous coupling:

Virtual controls
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control: solve

with

Lemma. If all data are smooth enough and if 
then

admits a solution.

Theorem. If we set and

all other data being fixed, thenif we let

(Gervasio, J.-L. Lions, Q. , 2001)
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REDUCING COMPLEXITYREDUCING COMPLEXITY
BY GEOMETRICAL MULTISCALEBY GEOMETRICAL MULTISCALE
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Perfusion of tissues and vascular networks

The vascular structures of living tissues feature different scales
(branching)

Medium size vessels:
1D structures

Small vessels (capillaries):
3D porous structures

Goal: numerical simulation of

•Blood flow

•Metabolism, Transport

(C.D’Angelo)
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The 1D-3D model problem

The simplest situation: steady flow.

blood pressure in the vessel (1D)
blood pressure in the tissue (3D)

flow rate from the vessel to the tissue (exchange term)

+ boundary conditions (3D: homogeneous Neumann, 1D: Dirichlet)

Notice the measure term in the 3D equation (Dirac measure concentrated
on the vessel)



GEOMETRIC
PRE-

PROCSSING

MODEL
VALIDATION

OUTCOME

DD18, Jerusalem, 16 Jan 2008

Flow in a vascularized tissue
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Blood flow and oxygen transport (brain)

Oxygen transport and
reaction in the tissue

Blood pressure in the
main vessels

Circle of Willis
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Local (level1):
3D flow model

Global (level 2):
1D network of
major arteries and
veins

Global (level 3):
0D capillary
network

Geometrical multiscale in circulatory system



GEOMETRIC
PRE-

PROCSSING

MODEL
VALIDATION

OUTCOME

DD18, Jerusalem, 16 Jan 2008

3D-1D for the carotid: pressure pulse

Geometrical Multiscale Model

(A.Moura)
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HDDHDD

FOR MULTIPHYSICSFOR MULTIPHYSICS
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Surface-Groundwater Flows Biochemical Transfer in Artery Walls

(E. Miglio) (P(P.Zunino)

HDD FOR MULTIPHYSICS: HDD FOR MULTIPHYSICS: NavierNavier-Stokes/Darcy-Stokes/Darcy
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Water
Phase

Air
Phase

Interface
Conditions

Two-phase flow equations

Multiphysics in Sailing Yachts
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Multiphysics in Sailing Yachts
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Streamlines  around 
bulb and winglets
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Blood-flow equations:

Vessel equation:

Coupling equations:

Fluid-vessel mechanical interaction
Multiphysics in the circulatory system
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Flowfield and vessel deformation
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Solution Algorithms

1. Steady Problems

2. Unsteady Problems
• Monolithic
• Explicit
• Implicit + subiterations / DD
• Semi-implicit: differential / algebraic

• Fixed point
• Substructuring based
• Steklov-Poincaré based
• Optimal “Fourier” algorithms (Nataf, Halpern, Gander,Japhet)
• CG + adjoint problem  in control approaches
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Construction of the Steklov-Poincare’ (Dirichlet-to-Neumann) maps SPf and SPs:

Steklov-Poincare’ equation

Interface Problem:

Note: here the St solver takes a displacement as bc on the interface.
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A Demonstration of Mathematical Techniques, I

Consider the problem

find   l in X :   Sl = c
where S:X to X’ is a linear invertible continuous operator, such that

S = S1+S2

If

• S2  is continuous and coercive
• S1  is continuous and non-negative,
then, for all l0 in X and for all 0<q<q*, the sequence

lk+1  =  lk  +  q S2
-1 (c – S lk)

converges in X to the solution l.
(Q. and Valli (1999))

Linear Steklov-Poincaré equation
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Consider the problem

find   l in X :   S1 ( l ) +S2 l = c
where S1:X à X’ is nonlinear and S2:X à X’  is linear.
If
• S is strongly monotone in X
• S2  is continuous and coercive
• S1  is Lipschitz continuous,
then, the solution is unique and for all l0 in X and for all 0<q<q*, the
sequence

lk+1  =  lk  +  q S2
-1 (c – S lk)

converges in X to the solution l.
(H.Berninger (2007))

(proof based on Banach’s fixed point Theorem)

Nonlinear Steklov-Poincaré equation

A Demonstration of Mathematical Techniques, II
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Newton / fixed-point techniques
Consider the nonlinear problem

find   l in X :   S(l) = 0

where S:X à Y is a nonlinear operator.
Let l0 be “close enough” to the solution l in X.
If
• S has continuous second derivative in a suitable closed ball X0centered in l0
• the linear operator S’(l0)-1 exists and is continuous
• || S’(l0)-1 S(l0)-1 || < C1
• || S’(x)-1 S’’(x) || < C2 in X0
• C1 C2 <1/2,
then, the Newton method

lk+1  =  lk  - S’(lk)-1 S(lk)
converges in X0 to the solution l.
(Kantorovic (1948))

A Demonstration of Mathematical Techniques, III
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