
DD18 2008

Domain Decomposition Methods
 and High Performance Computing

David Keyes
Department of Applied Physics and Applied Mathematics

Columbia University

DD18 2008

Plan of presentation
 Glimpse at intertwined history of high performance

computing and domain decomposition algorithms
 Mention three programming paradigms for domain

decomposition methods
 Peek at the algorithmic motivation for “standard”

bulk synchronous implicit parallel implementations
based on additive subspace corrections
 definitions of scalability
 a family of techniques that weak-scales indefinitely (for

multirate problems with exploitable scale separation) in
the Bulk Synchronous Programming (BSP) paradigm

DD18 2008

Domain decomposition and parallel computing

Intel Paragon, Numerical Wind Tunnel, Cray T3D
Mosaic, Legion, first Top500 list

University
Park

1993

KSR-1 MasPar MP-2 MPIComo1992

Cray C90, CM-200, CM-5, Intel Delta
FORTRAN-D, World Wide Web, CORBA

Norfolk1991

NEC SX-3, iPSC/860, MasPar MP-1
PVM

Houston1990

nCUBE/2
Bulk Synchronous Programming, CRPC

Moscow1989

Convex C2, Cray Y-MP, iPSC/2, SGI Power, Tera
inspector/executor model

Los
Angeles

1988

ETA-10, CM-2 Multiflow, Ametek
isoefficiency, first Gordon Bell Prize, LAPACK

Paris1987

CM-1, Multimax, Cray X-MP, FPS Hypercube1986

Intel iPSC/1, Transputer, Alliant FX/8, nCUBE, ICL DAP
Linda

1985

DD18 2008

Gordon Bell Prize “peak performance”

Five orders of
magnitude in
17 years

Year Type Application No. Procs

System Gflop/s

1988 PDE Structures 8 Cray Y -MP 1.0

1989 PDE Seismic 2,048 CM-2 5.6

1990 PDE Seismic 2,048 CM-2 14

1992 NB Gravitation 512 Delta 5.4

1993 MC Boltzmann 1,024 CM-5 60

1994 IE Structures 1,904 Paragon 143

1995 MC QCD 128 NWT 179

1996 PDE CFD 160 NWT 111

1997 NB Gravitation 4,096 ASCI Red 170

1998 MD Magnetism 1,536 T3E-1200 1,020

1999 PDE CFD 5,832 ASCI BluePac 627

2000 NB Gravitation 96 GRAPE -6 1,349

2001 NB Gravitation 1,024 GRAPE-6 11,550

2002 PDE Climate 5,120 Earth Sim 26,500

2003 PDE Seismic 1,944 Earth Sim 5,000

2004 PDE CFD 4,096 Earth Sim 15,200

2005 MD Solidification 131,072 BG/L 101,700

2006 MD Elec. Struct. 131,072 BG/L 207,000

DD18 2008

Parallelism in Domain Decomposition proceedings
 Paris, France, 1987
 Los Angeles, USA, 1988
 Houston, USA, 1989
 Moscow, USSR, 1990
 Norfolk, USA, 1991
 Como, Italy, 1992
 University Park, USA, 1993
 Beijing, China, 1995
 Ullensvang, Norway, 1996
 Boulder, USA, 1997
 Greenwich, UK, 1998
 Chiba, Japan, 1999
 Lyon, France, 2000
 Cocoyoc, Mexico, 2002
 Berlin, Germany, 2003
 New York, USA 2005
 Strobl, Austria, 2006
 Jerusalem, Israel, 2008
 Zhangjiajie, China, 2009

No parallel results in DD1
proceedings though the
motivation is obvious

DD2-DD9 were generally
organized into four sections:

I. Theory

II. Algorithms

III. Parallel Implementations

IV. Applications

From DD10 onwards, parallelism
is more or less taken for
granted and plays no
organizing role in
proceedings

Yale’s Intel iPSC-1: 128 80286 processors
connected through ethernet controllers
= 1.536 Gflop/s

Thread-concurrency: 128 nodes
programmed using Intel’s “NX”

On the floor in the Yale
CS machine room in Fall
2005 – the world’s
largest Intel iPSC
configuration at that
time.

Had to be manually
rebooted hourly or
more often

DD18 2008

My first DD paper (with W. D. Gropp)

DD18 2008

My first DD paper (with W. D. Gropp)

64×64
mesh

4×4
proc
mesh

ANL’s IBM BlueGene/P: 72K quad-core
procs w/ 2 FMADD @ 850 MHz
= 1.008 Pflop/s

13.6 GF/s
8 MB EDRAM

4 processors

1 chip

13.6 GF/s
2 GB DDRAM

32 compute cards

435 GF/s
64 GB

32 node cards

72 racks

1 PF/s
144 TB

Rack

System

Node Card

Compute Card

Chip

14 TF/s
2 TB

Thread-concurrency: 288K
(or 294,912 processors)

On the floor at Argonne
National Laboratory by
early 2009

DD18 2008

Building platforms is the “easy” part

 Algorithms must be
 highly concurrent and straightforward to load balance
 latency tolerant
 cache friendly (good temporal and spatial locality)
 highly scalable (in the sense of convergence)

 Domain decomposition “natural” for all of these

 Domain decomposition also “natural”
for software engineering

 Fortunate that its theory was built
in advance of requirements!

DD18 2008

Contemporary interest

 Goal is algorithmic scalability:
fill up memory of arbitrarily large machines to
increase resolution, while preserving nearly constant*
running times with respect to proportionally smaller
problem on one processor

*at worst logarithmically growing

DD18 2008

Review: two definitions of scalability
 “Strong scaling”

 execution time decreases in
inverse proportion to the
number of processors

 fixed size problem overall
 often instead graphed as

reciprocal, “speedup”

 “Weak scaling”
 execution time remains constant,

as problem size and processor
number are increased in
proportion

 fixed size problem per processor
 also known as “Gustafson

scaling”

T

p

good

poor

poor

N ∝ p

log T

log p
good

N constant

Slope
= -1

Slope
= 0

DD18 2008

Strong scaling illus. (1999 Bell Prize)
 Newton-Krylov-Schwarz (NKS) algorithm for compressible and

incompressible Euler and Navier-Stokes flows
 Used in NASA application FUN3D (M6 wing results below with 11M dof)

128 nodes
43min

3072 nodes
2.5min,
226Gf/s

15µs/unknown
70% efficient

DD18 2008

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000

ASCI-White Processors

T
im

e
 (

s
e
c
o

n
d

s
)
Total Salinas FETI-DP

Weak scaling illus. (2002 Bell Prize)

1mdof

4mdof

9mdof

18mdof

30mdof

60mdof

c/o C. Farhat, Stanford

 Finite Element Tearing and Interconnection (FETI) algorithm for
solid/shell models

 Used in Sandia applications Salinas, Adagio, Andante

DD18 2008

Parallel programming paradigms for domain
decomposition

 Multiple Instruction Multiple Data (MIMD)
 different processors specialize to different steps
 example: Schur complement method in which subdomain

condensation and interface systems are handled separately and
Schur complements shipped between

 Single Program Multiple Data (SPMD) Bulk
Synchronous Programming
 all processors run the same code on a different subdomain and cycle

between synchronized computation and communication phases
 example: vast majority of all PDE-based parallel computing,

including all codes run with TOPS software (PETSc, hypre,
SUNDIALS, Trilinos, etc.), on dedicated, tightly-coupled resources

 Semi-asynchronous programming
 groups of processes run mostly independently with infrequent

synchronization
 example: Grid-type computing, natural when jobs are hard to

balance, e.g., nonlinear Schwarz (ASPIN) and cycles scavenged

DD18 2008

SPMD parallelism w/domain decomposition
puts off limitation of Amdahl in weak scaling

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned

to proc “2”

DD18 2008

Four steps in creating a parallel program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

 Decomposition of computation in tasks
 Assignment of tasks to processes
 Orchestration of data access, communication, synchronization
 Mapping processes to processors

c/o D. E. Culler, Berkeley

DD18 2008

Krylov-Schwarz parallelization summary
 Decomposition into concurrent tasks

 by domain

 Assignment of tasks to processes
 typically one subdomain per process

 Orchestration of communication between processes
 to perform sparse matvec – near neighbor communication
 to perform subdomain solve – nothing
 to build Krylov basis – global inner products
 to construct best fit solution – global sparse solve (redundantly)

 Mapping of processes to processors
 typically one process per processor

DD18 2008

Krylov-Schwarz kernel in parallel

local
scatter

Jac-vec
multiply

Schwarz
precond

daxpyinner
product

Krylov
iteration

…

What happens if, for instance, in
this (schematicized) iteration,
arithmetic speed is doubled, scalar
all-gather is quartered, and local
scatter is cut by one-third? Each
phase is considered separately.
Answer is to the right.

P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M

DD18 2008

“Scalable” includes “optimal”
 “Optimal” for a theoretical numerical analyst means a

method whose floating point complexity grows at most
linearly in the data of the problem, N, or (more practically
and almost as good) linearly times a polylog term

 For iterative methods, this means that the cost per iteration
must be at most O(N logp N) and the number of iterations
must be at most O(logp N)

 Cost per iteration must include communication cost as
processor count increases in weak scaling, P ∝ N
 BlueGene permits this with its log-diameter global

reduction
 Number of iterations comes from condition number for

linear iterative methods; Newton’s superlinear convergence
is important for nonlinear iterations

DD18 2008

Why optimal algorithms?
 The more powerful the computer, the greater the

importance of optimality
 though the counter argument is often employed

 Example:
 Suppose Alg1 solves a problem in time C N2, where N is the

input size
 Suppose Alg2 solves the same problem in time C N log2 N
 Suppose Alg1 and Alg2 parallelize perfectly on a machine of

1,000,000 processors

 In constant time (compared to serial), Alg1 can run a
problem 1,000 X larger, whereas Alg2 can run a
problem about 50,000 X larger

DD18 2008

Schwarz domain decomposition (DD) method

 Consider restriction and extension
operators for subdomains, ,
and for possible coarse grid,

 Replace discretized with

 Solve by a Krylov method
 Matrix-vector multiplies with

 parallelism on each subdomain
 nearest-neighbor exchanges, global reductions
 possible small global system (not needed for parabolic case)

i
!

i
R

0
R

T
RR
00

,

T

ii
RR ,

fAu =

fBAuB 11 !!
=

ii

T

ii

T
RARRARB
1

0

1

00

1 !!! "+=

T

iii
ARRA =

=

DD18 2008

Estimating scalability of stencil computations
 Given complexity estimates of the leading terms of:

 the concurrent computation (per iteration phase)
 the concurrent communication
 the synchronization frequency

 And a bulk synchronous model of the architecture including:
 internode communication (network topology and protocol reflecting horizontal

memory structure)
 on-node computation (effective performance parameters including vertical

memory structure)

 One can estimate optimal concurrency and optimal execution
time
 on per-iteration basis, or overall (by taking into account any granularity-

dependent convergence rate)
 simply differentiate time estimate in terms of (N,P) with respect to P, equate to

zero and solve for P in terms of N

DD18 2008

 Estimating 3D stencil costs (per iteration)

 grid points in each
direction n, total work
N=O(n3)

 processors in each
direction p, total procs
P=O(p3)

 memory per node
requirements O(N/P)

 concurrent execution time per
iteration A n3/p3

 grid points on side of each
processor subdomain n/p

 Concurrent neighbor commun.
time per iteration B n2/p2

 cost of global reductions in each
iteration C log p or C p(1/d)

 C includes synchronization
frequency

 same dimensionless units for
measuring A, B, C
 e.g., cost of scalar floating point

multiply-add

DD18 2008

3D stencil computation illustration
Rich local network, tree-based global reductions

 total wall-clock time per iteration

 for optimal p, , or

 or (with),

 without “speeddown,” p can grow with n
 in the limit as

pC
p

n
B

p

n
ApnT log),(

2

2

3

3

++=

0=
!

!

p

T
,023

3

2

4

3

=+!!
p

C

p

n
B

p

n
A

CA

B

2

3

243

32
!"

[] [] n
C

A
popt !"

#

$
%
&

' ((+(+"
#

$
%
&

'
= 3

1
3
13

1

)1(1)1(1
2

3
))

0!
C
B

n
C

A
popt !"

#

$
%
&

'
=

3
1

3

DD18 2008

3D stencil computation illustration
Rich local network, tree-based global reductions

 optimal running time

 where

 limit of infinite neighbor bandwidth, zero neighbor latency ()

 (This analysis is on a per iteration basis; complete analysis
multiplies this cost by an iteration count estimate that generally
depends on n and p.)

(),log))(,(
23

nC
BA

npnT opt !
!!

++=

[] [] !
"

#
$
%

& ''+'+!
"

#
$
%

&
= 3

1
3
13

1

)1(1)1(1
2

3
(()

C

A

0!B

!"

#
$%

&
++= .log

3

1
log))(,(const

C

A
nCnpnT opt

DD18 2008

Scalability results for DD stencil computations

 With tree-based (logarithmic) global
reductions and scalable nearest neighbor
hardware:
 optimal number of processors scales linearly with

problem size

 With 3D torus-based global reductions and
scalable nearest neighbor hardware:
 optimal number of processors scales as three-fourths

power of problem size (almost “scalable”)

 With common network bus (heavy
contention):
 optimal number of processors scales as one-fourth

power of problem size (not “scalable”)

DD18 2008

Factoring convergence rate into estimates

 In terms of N and P, where for d-dimensional
isotropic problems, N=h-d and P=H-d, for mesh
parameter h and subdomain diameter H,
iteration counts may be estimated as follows:

Ο(P1/3)Ο(P1/2)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi (δ=0)
Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

 Krylov-Schwarz iterative methods typically converge in a
number of iterations that scales as the square-root of the
condition number of the Schwarz-preconditioned system

DD18 2008

Where do these results come from?
 Point Jacobi result is well known (see any book on the

numerical analysis of elliptic problems)
 Subdomain Jacobi result has interesting history

 Was derived independently from functional analysis, linear algebra, and
graph theory

 Schwarz theory is neatly and abstractly summarized in Section
5.2 Smith, Bjorstad & Gropp (1996) and Chapter 2 of Toselli &
Widlund (2004)
 condition number, κ ≤ ω [1+ρ(ε)] C0

2

 C0
2 is a splitting constant for the subspaces of the decomposition

 ρ(ε) is a measure of the orthogonality of the subspaces
 ω is a measure of the approximation properties of the subspace solvers

(can be unity for exact subdomain solves)
 These properties are estimated for different subspaces, different

operators, and different subspace solvers and the “crank” is turned

DD18 2008

Onward to nonlinearity
 Linear versus nonlinear problems

 Solving linear systems often constitutes 90% of the running
time of a large PDE simulation

 The nonlinearity is often a fairly straightforward outer loop,
in that it introduces no new types of messages or
synchronizations not present in Krylov-Schwarz, and has
overall many fewer synchronizations than the preconditioned
Krylov method or other linear solver inside it

 We can wrap Newton, Picard, fixed-point or other
iterations outside, linearize, and apply what we know

 We leave Newton-outside (NKS) to Xiao-Chuan and
comment on Newton-inside methods in the parallel
context

DD18 2008

 Nonlinear Schwarz
 Nonlinear Schwarz has Newton both inside and

outside and is fundamentally Jacobian-free
 It replaces with a new nonlinear system

possessing the same root,
 Define a correction to the partition (e.g.,

subdomain) of the solution vector by solving the
following local nonlinear system:

 where is nonzero only in the
components of the partition

 Then sum the corrections: to get
an implicit function of u

0)(=uF

0)(=! u

th
i

th
i

)(u
i
!

0))((=+ uuFR
ii
!

n

i
u !")(#

)()(uu
ii
!"=#

DD18 2008

 Nonlinear Schwarz – picture

1
 1
 1
 1

0 0

u

F(u)

Ri

RiuRiF

DD18 2008

 Nonlinear Schwarz – picture

1
 1
 1
 1

0 0

1
 1
 1
 1

0 0

u

F(u)

Ri

Rj

Riu

RjF

RiF

Rju

DD18 2008

 Nonlinear Schwarz – picture

u

F(u)

Fi’(ui)

Ri

Rj

δiu+δju

1
 1
 1
 1

0 0

1
 1
 1
 1

0 0 RiuRiF

RjuRjF

DD18 2008

 Nonlinear Schwarz, cont.
 It is simple to prove that if the Jacobian of F(u) is

nonsingular in a neighborhood of the desired root then
and have the same unique root

 To lead to a Jacobian-free Newton-Krylov algorithm
we need to be able to evaluate for any :
 The residual
 The Jacobian-vector product

 Remarkably, (Cai-K, 2000) it can be shown that

 where and
 All required actions are available in terms of !
 Suitable for asynchronous parallelism, Newton inside

0)(=! u

n
vu !",

)()(uu
ii
!"=#

0)(=uF

vu
')(!

JvRJRvu
ii

T

ii
)()(1' !"#$

)(' uFJ =
T

iii
JRRJ =

)(uF

DD18 2008

Some noteworthy algorithmic adaptations to
distributed memory architecture

 Nonlinear Schwarz (Cai & K)
 reduce global Krylov-Schwarz synchronizations by applying

NKS within well-connected subdomains and performing few
global outer Newton iterations

 Restricted Schwarz (Cai & Sarkis)
 omit every other local communication (actually leads to

better convergence, now proved)
 Extrapolated Schwarz (Garbey & Tromeur-Dervout)

 hide interprocessor latency by extrapolating messages
received in time integration, with rollback if actual messages
have discrepancies in lower Fourier modes (higher mode
discrepancies decay anyway)

DD18 2008

State of the art in domain decomposition
 Domain decomposition is the dominant paradigm in contemporary

terascale PDE simulation and will be at peta-, exa-, etc., scales
 Several freely available software toolkits exist, and successfully scale to

thousands of tightly coupled processors for problems on quasi-static
meshes

 Concerted efforts underway (e.g., in SciDAC) to make elements of these
toolkits interoperate, and to allow expression of the best methods, which
tend to be modular, hierarchical, recursive, and above all — adaptive!

 Many challenges loom at the “next scale” of computation
 Implementation of domain decomposition methods on parallel

computers has inspired many useful variants of domain decomposition
methods

 The past few years have produced an incredible variety of interesting
results (in both the continuous and the discrete senses) in domain
decomposition methods, with no slackening in sight

