
Optimized Schwarz Methods

Frédéric Nataf

Laboratoire J.L. Lions, CNRS

UMR7598, Paris, France. nataf@ann.jussieu.fr
www.ann.jussieu.fr/˜nataf

1



Outline

1. Why working on DDM?

2. Schwarz method (1860)

3. Two families of methods

Schur Complement type methods (Neumann-Neumann,

FETI, BDDC, FETI-DP, . . .

Optimized Schwarz Methods

4. Conclusion and Open problems

2



Why working on DDM: a personal view

• a Matter of Taste

Interplay between linear algebra and partial differential

equations

• Background

Optimized Schwarz methods are strongly related to parabolic

approximations of PDEs and to Absorbing boundary

conditions (my PhD subjects)

• Generality

A transverse tool (no specific application field) with regular

meetings

• Future

The feeling that DDMs are (part of) the future of scientific

computing in connection with parallel computing.
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The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

−∆u = f in Ω

u = 0 on ∂Ω.

Ω
1

Ω
2

Additive Schwarz Method : (un
1 , un

2 ) → (un+1
1 , un+1

2 ) with

−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 = un

2 on ∂Ω1 ∩ Ω2.

−∆(un+1
2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = u

n(+1)
1 on ∂Ω2 ∩ Ω1.

Parallel algorithm, converges but very slowly

Matching interface conditions are of the Dirichlet type

Improvement will come from introducing Neumann or

more general boundary conditions+ Krylov methods in

replacement of the fixed point algorithm.
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First family of modern methods : Schur

Complement methods – Substructuring

formulation

Consider a non overlapping decomposition of the domain Ω into Ω1

and Ω2 and Dirichlet BVP in each subdomain with u|Γ as a

Dirichlet data

−∆(ui) = f in Ωi,

ui = u|Γ on Γ, ui = 0 sur ∂Ωi\Γ.

The jump of the normal derivative across the interface is a function

of f and u|Γ
S(f, u|Γ) =

1

2

(

∂u1

∂n1
+

∂u2

∂n2

)

|Γ

The substructured interface problem reads : Find u|Γ s.t.

S(0, u|Γ) = −S(f, 0)

The corresponding discretized problem is solved by a Krylov type

method such as CG, GMRES, BICGSTAB, QMR, . . .
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• Gain: if κ(−∆h) = O(1/h2), then κ(Sh) = O(1/h). At the

expense of a costly matrix-vector product.

• Extension : Find a good preconditioner Th s.t.

κ(Th Sh) ≃ O(1). The Neumann-Neumann preconditioner is

based on solving Neumann problems in the subdomains.

FETI method : Substructured problem in terms of the normal

derivative of the solution on the interface, preconditioned by

Dirichlet problems.
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Other possible improvement: Other Interface

Conditions

(P.L. Lions, 1988)

−∆(un+1
1 ) = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

(
∂

∂n1
+ α)(un+1

1 ) = (− ∂

∂n2
+ α)(un

2 ) on ∂Ω1 ∩ Ω2,

(n1 and n2 are the outward normal on the interface)

−∆(un+1
2 ) = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

(
∂

∂n2
+ α)(un+1

2 ) = (− ∂

∂n1
+ α)(un

1 ) on ∂Ω2 ∩ Ω1.

with α > 0. Overlap is not necessary for convergence.

Extended to the Helmholtz equation (B. Desprès, 1991): the first

iterative solver to Helmholtz.

a.k.a Two-Lagrange Multiplier FETI Method, FETI-2LM 1998.
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• Gain: Much faster convergence, no need for overlaps

• Extensions:

Find even better interface conditions (Optimized Scwharz

methods)

introduce Krylov type methods in place of the above fixed

point algorithm
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Optimal Schwarz Methods

(Hagstrom, 1988)

Constant coefficient Advection-Diffusion equation on a domain

decomposed into two subdomains.

(~a∇− ν∆)(un+1
1 ) = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

(
∂

∂n1
+ B1)(u

n+1
1 ) = (− ∂

∂n2
+ B1)(u

n
2 ) on ∂Ω1 ∩ Ω2,

(~a∇− ν∆)(un+1
2 ) = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

(
∂

∂n2
+ B2)(u

n+1
2 ) = (− ∂

∂n1
+ B2)(u

n
1 ) on ∂Ω2 ∩ Ω1.

where Bi, i = 1, 2 are defined via a Fourier transform along the

interface

Convergence in two iterations
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Optimal Schwarz Methods

Let us consider the problem

Li(Pi) = f in Ωi, i = 1, 2

P1 = P2 on Γ12,

κ1
∂P1

∂n1
+ κ2

∂P2

∂n2
= 0 on Γ12.

where

Li = ηi − div(κi∇)̇

K1 K2

x

y
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Optimal Schwarz Methods

Let

ui = κi∇Pi

Let us consider a Schwarz type method:

L1(P
n+1
1 ) = f in Ω1

P n+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 .~n1 + B1(P

n+1
1 )

= −un
2 .~n2 + B1(P

n
2 ) on Γ1

L2(P
n+1
2 ) = f in Ω2

P n+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 .~n2 + B2(P

n+1
2 )

= −un
1 .~n1 + B2(P

n
1 ) on Γ2

We take

B1= DtN2.

and have convergence in two iterations.

The optimal interface conditions are Exact Absorbing Boundary

Conditions
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Optimal Schwarz Methods

We introduce the DtN (Dirichlet to Neumann) map (a.k.a.

Steklov-Poincaré):

Let P0 : Γ12 → R

DtN2(P0) ≡ κ2
∂

∂n2
(P )|Γ12

(1)

where n2 is the outward normal to Ω2\Ω̄1 and P satisfies the

following boundary value problem:

L(P ) = 0 in Ω2

P = 0 on ∂Ω2\Γi

P = P0 on Γ12.

Recall

B1= DtN2.
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OptimalSchwarz Methods

(Rogier, de Sturler and N., 1993)

The result can be generalized to variable coefficients operators and

a decomposition of the domain Ω in more than two subdomains.

For the following geometries,

one can define interface conditions such as to have convergence in a

number of iterations equals to the number of subdomains.

For arbitrary decompositions, negative conjectures have been

formulated (F. Nier, Séminaire X-EDP, 1998).
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Optimized Interface Conditions

The Dirichlet to Neumann map (DtN) is not a partial differential

operator :

1. it is non local

2. no explicit formula in the general case

It is approximated by a partial differential operator

DtN ≃ αopt −
∂

∂τ
(γopt

∂

∂τ
)

minimizing the convergence rate using Fourier transform as an

essential tool. The resulting interface conditions are called

optimized of order 2 (opt2) interface conditions.

Work of C. Japhet on the convection-diffusion equation (PhD

thesis, 1998)

More relevant than classical approximate absorbing boundary

conditions.
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Application: the Helmholtz Equation

Joint work with M. Gander and F. Magoulès

SIAM J. Sci. Comp., 2002.

We want to solve

−ω2u − ∆u = f in Ω

u = 0 on ∂Ω.

The relaxation algorithm is : (up
1, u

p
2) → (up+1

1 , up+1
2 ) with

(i 6= j, i = 1, 2)

(−ω2 − ∆)(up+1
i ) = f in Ωi

(
∂

∂ni

+ S)(up+1
i ) = (− ∂

∂nj

+ S)(up
j ) on Γij .

up+1
i = 0 on ∂Ωi ∩ ∂Ω

The operator S has the form

S = α − γ
∂2

∂τ2
α, γ ∈ C
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Application: the Helmholtz Equation

By choosing carefully the coefficients α and γ, it is possible to

optimize the convergence rate of the iterative method which in the

Fourier space is given by

ρ(k; α, γ) ≡































∣

∣

∣

∣

∣

I
√

ω2 − k2 − (α + γk2)

I
√

ω2 − k2 + (α + γk2)

∣

∣

∣

∣

∣

if ω > |k| (I2 = −1)

∣

∣

∣

∣

∣

√
k2 − ω2 − (α + γk2)√
k2 − ω2 + (α + γk2)

∣

∣

∣

∣

∣

if ω < |k|< 1/h

Finally, we get analytic formulas for α and γ (h is the mesh size):

αopt = α(ω, h) and γopt = γ(ω, h),

Moreover, a Krylov method (GC, GMRES, BICGSTAB, . . .)

replaces the fixed point algorithm.
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Optimized Schwarz method for the Helmholtz Equation

Numerical Results: Acoustic in a Car
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Numerical Results: Acoustic in a Car
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Optimized Schwarz method for the Helmholtz Equation

Numerical Results
Acoustic in a Car : Iteration Counts for various interface conditions

Ns ABC 0 ABC 2 Optimized

2 16 it 16 it 9 it

4 50 it 52 it 15 it

8 83 it 93 it 25 it

16 105 it 133 it 34 it

ABC 0: Absorbing Boundary Conditions of Order 0 (∂n + Iω)

ABC 2: Absorbing Boundary Conditions of Order 2

(∂n + Iω − 1/(2Iω)∂yy)

Optimized: Optimized Schwarz Methods
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Motor compartment
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Optimal Schwarz Methods at the matrix level

When a finite element method, for instance, is used it yields a

linear system of the form AU = F , where F is a given right-hand

side and U is the set of unknowns.

Corresponding to a domain decomposition, the set of unknowns U

is decomposed into interior nodes of the subdomains U1 and U2,

and to unknowns, UΓ, associated to the interface Γ.

This leads to a block decomposition of the linear system









A11 A1Γ 0

AΓ1 AΓΓ AΓ2

0 A2Γ A22

















U1

UΓ

U2









=









F1

FΓ

F2









. (2)
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Optimal Schwarz Methods at the matrix level

The DDM method reads:




A11 A1Γ

AΓ1 AΓΓ + S2









Un+1
1

Un+1
Γ,1



 =





F1

FΓ + S2U
n
Γ,2 − AΓ2U

n
2



 (3)





A22 A2Γ

AΓ2 AΓΓ + S1









Un+1
2

Un+1
Γ,2



 =





F2

FΓ + S1U
n
Γ,1 − AΓ1U

n
1



 (4)

where

S1 = −AΓ1A
−1
11 A1Γ

and

S2 = −AΓ2A
−1
22 A2Γ

Convergence in two iterations

23



Approximate Interface Condition at the matrix

level

The matrices S1 = −AΓ1A
−1
11 A1Γ and S2 = −AΓ2A

−1
22 A2Γ are full

interface matrices (Γ × Γ).

Cons

• Costly to compute

• The subdomain matrix is partly full

Approximate S1 and S2 by sparse matrices

1. e.g. via sparse approximations to A−1
ii : SPAI

2. via local Schur complements on successive reduced “outer”

domains, “patches”, (γ × δ) (Roux, 2003)

The first approach gives mild results. The second one is not better

than using an overlap of depth δ but is cheaper.
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Conclusion

• Both approaches (Neumann-Neumann and optimized Schwarz

methods) are robust (thanks to Krylov methods).

• Neumann-Neumann, FETI, .. optimal but lacks generality

• optimized Schwarz methods are general but are more difficult

to tune
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Open problems

• Theory

Convergence proof or condition number estimate in a

general overlapping case

proof of the Non existence of Optimal Interface Conditions

for a general domain decomposition

• Algorithm

Algebraic Optimized Interface Conditions

Interplay between the Optimized Interface Conditions and

a Coarse Grid (see Japhet, Nataf, Roux, 1998)

Systems of PDEs (versus scalar PDEs)
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Thanks !
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How to use Krylov type methods ?

Schwarz method

with arbitrary interface conditions

C1 and C2

L(un+1
1 ) = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

C1(u
n+1
1 ) = C1(u

n
2 ) on ∂Ω1 ∩ Ω2,

L(un+1
2 ) = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω,

C2(u
n+1
2 ) = C2(u

n
1 ) on ∂Ω2 ∩ Ω1,

⇐⇒
Sub(C)(λ) = b solved by Jacobi

λ =





λ1

λ2



 , λi = Ci(uj), i 6= j

⇓
CG, GMRES, BICG, . . .
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