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Why working on DDM: a personal view

a Matter of Taste
Interplay between linear algebra and partial differential

equations

Background

Optimized Schwarz methods are strongly related to parabolic
approximations of PDEs and to Absorbing boundary
conditions (my PhD subjects)

Generality
A transverse tool (no specific application field) with regular

meetings

Future
The feeling that DDMSs are (part of) the future of scientific

computing in connection with parallel computing.



The First Domain Decomposition Method
The original Schwarz Method (H.A. Schwarz, 1870)

C Q

Additive Schwarz Method : (u},u?) — (u?h u*!) with

—Au=f in ()
u=0 on Jf).

A =f in AT =f inQy
u?“ = 0 on 021 N O u'g“ = 0 on 025 N 0N
u"tt =l on 09 N Q. ultt = u?(Jrl) on 00y N Q.

Parallel algorithm, converges but very slowly
Matching interface conditions are of the Dirichlet type
Improvement will come from introducing Neumann or
more general boundary conditions+ Krylov methods in
replacement of the fixed point algorithm.
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First family of modern methods : Schur
Complement methods — Substructuring
formulation

Consider a non overlapping decomposition of the domain €2 into {24
and )5 and Dirichlet BVP in each subdomain with u|r as a
Dirichlet data

—A(’LLZ) = f in Qi,
u; = ulp  on T, u; =0 sur O \T.

The jump of the normal derivative across the interface is a function
of f and u|r

1 [ 0Ou ou
S(fulr) = 5 (8—711 + 8—77;> r

The substructured interface problem reads : Find u|r s.t.
8(07 u‘F) — _S(f7 0)

The corresponding discretized problem is solved by a Krylov type
method such as CG, GMRES, BICGSTAB, QMR, ...
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o Gain: if k(—Ay) = O(1/h?), then x(S) = O(1/h). At the

expense of a costly matrix-vector product.

e Extension : Find a good preconditioner 7} s.t.
k(7n Sp) =~ O(1). The Neumann-Neumann preconditioner is

based on solving Neumann problems in the subdomains.

FETI method : Substructured problem in terms of the normal
derivative of the solution on the interface, preconditioned by

Dirichlet problems.



Other possible improvement: Other Interface
Conditions

(P.L. Lions, 1988)

~A@™) = f  in Qq,

W't =0 on 90 NOQ,
0 0

I n+1 (= n O
(8n1+a)(u1 ) (8n2+a)(u2) on 021 N Qo

(n1 and no are the outward normal on the interface)

—A@IT) = f  in Qq,

ult™ =0 on 00, NN
0 0

- n+1 _(_ Y n L
(an2+a)(uQ ) (an1+a)(u1) on 0€2s N ).

with a > 0. Overlap is not necessary for convergence.

Extended to the Helmholtz equation (B. Despres, 1991): the first
iterative solver to Helmholtz.

a.k.a Two-Lagrange Multiplier FETI Method, FETI-2LM 1998.



e Gain: Much faster convergence, no need for overlaps

e FExtensions:

Find even better interface conditions (Optimized Scwharz
methods)

introduce Krylov type methods in place of the above fixed

point algorithm
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Optimal Schwarz Methods

(Hagstrom, 1988)
Constant coefficient Advection-Diffusion equation on a domain

decomposed into two subdomains.

@V —vA)(u™) = f  in Q,

W't =0 on 90 NOQ,

0 n 0 n O
(3—774 + By)(uf ) = (_0—77,2 +Bi)(uz)  on 98y Ny,

@V —vA)(ud™) = f  in Qo,

ult™ =0 on 00y N IQ

(9 n 8 n O
(a_nz 4 Bo)(ul ) = (_8—774 + Bo)(u}) on 00 N Q.
where B;, 1 = 1,2 are defined via a Fourier transform along the
interface

Convergence in two iterations
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Optimal Schwarz Methods

Let us consider the problem

P1 =Py, onls,
0P, 0Ps

— — =0 5.
/€1an1+/€28n2 on 12

where

Ci =M1; — dZ’U(KVZV)

11



Optimal Schwarz Methods

Let
u; = K; VI

Let us consider a Schwarz type method:

L(PMTY =Ff iny Lo(PITHY =f in Qy
P“Jrl = 0 on 0€2; N 0N Pn+1 = 0 on 025 N 0N
uft iy + By (PP uy ity + Ba(Py )
= —ul .o + B1(P)) on Iy = —ul.n1 + Ba(P{") on Iy
We take
Bi= DtN,.

and have convergence in two iterations.
The optimal interface conditions are Exact Absorbing Boundary

Conditions
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Optimal Schwarz Methods

We introduce the DtN (Dirichlet to Neumann) map (a.k.a.
Steklov-Poincaré):

LetPO:F12—>R
0

DtNQ(Po) = /4326—712(P)|F12

where n» is the outward normal to 92\5_21 and P satisfies the
following boundary value problem:

P =0on 8Q2\FZ
P:PO on Flg.

Recall
Bl — DtNQ
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OptimalSchwarz Methods

(Rogier, de Sturler and N., 1993)
The result can be generalized to variable coeflicients operators and
a decomposition of the domain €2 in more than two subdomains.

For the following geometries,

d 1 D& &

one can define interface conditions such as to have convergence in a
number of iterations equals to the number of subdomains.

For arbitrary decompositions, negative conjectures have been
formulated (F. Nier, Séminaire X-EDP, 1998).
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Optimized Interface Conditions

The Dirichlet to Neumann map (DtN) is not a partial differential
operator :

1. it is non local
2. no explicit formula in the general case

It is approximated by a partial differential operator

DtN >~ appt — %(%pt%)
minimizing the convergence rate using Fourier transform as an
essential tool. The resulting interface conditions are called
optimized of order 2 (opt2) interface conditions.

Work of C. Japhet on the convection-diffusion equation (PhD
thesis, 1998)

More relevant than classical approximate absorbing boundary

conditions.
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Application: the Helmholtz Equation
Joint work with M. Gander and F. Magoules
SIAM J. Sci. Comp., 2002.

We want to solve
—wu—Au=f inQ
=0 on Jf).

The relaxation algorithm is : (u?,u) — (u?', u5*") with

(—w? = A)W™) =f inQ

W 1

0 iy 0 -
(G + W = (5 48 on Ty
p+1

— 0 on 0€); N ON

The operator S has the form
82

S=a-755

a,ve€C
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Application: the Helmholtz Equation

By choosing carefully the coefficients o and , it is possible to
optimize the convergence rate of the iterative method which in the

Fourier space is given by

IvVw? — k2 — (a + vk?)
IVw? — k2 + (a + vk?)

e

if w > k| (I* = —1)

p(k; ) = <
VE2 —w? — (a+vk?)
V2 — w2 + (a + vk?)

Finally, we get analytic formulas for a and v (h is the mesh size):

if w<|k|<1/h

\

Qopt = a(w, h) and vope = v(w, h),

Moreover, a Krylov method (GC, GMRES, BICGSTAB, ...)
replaces the fixed point algorithm.
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Optimized Schwarz method for the Helmholtz Equation

Numerical Results: Acoustic in a Car
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Numerical Results: Acoustic in a Car
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Optimized Schwarz method for the Helmholtz Equation

Numerical Results
Acoustic in a Car : Iteration Counts for various interface conditions

Ns | ABC 0 | ABC 2 | Optimized
2 16 it 16 it 9 it
4 50 it 52 it 15 it
8 83 it 93 it 25 it

16 | 1051t | 133 it 34 it

ABC 0: Absorbing Boundary Conditions of Order 0 (0, + [w)
ABC 2: Absorbing Boundary Conditions of Order 2

(On + Tw —1/(2Iw)0y,)

Optimized: Optimized Schwarz Methods
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Motor compartment

Trequency | wumber of sub-gomains Order Zero Order Two
Taylor | Optimized | Taylor | Optimized
&0 2 451 205 453 147
&0 4 273 287 625 186
&0 8 715 355 203 237
800 2 447 221 445 146
800 4 647 323 Tad 212
800 8 1069 aal 1105 354

Table 5: Number of iterations for different transmission conditions, frequencies values and
numbers of sub-domains for the engine compartment problom.
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Optimal Schwarz Methods at the matrix level

When a finite element method, for instance, is used it yields a
linear system of the form AU = F', where F' is a given right-hand
side and U is the set of unknowns.

Corresponding to a domain decomposition, the set of unknowns U
is decomposed into interior nodes of the subdomains U; and Us,
and to unknowns, Ur, associated to the interface I'.

This leads to a block decomposition of the linear system

A1 Aqir 0 U, Fi
Ar1 Arr Are Ur| = | fr |- (2)
0 Aor Ao Us Fs
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Optimal Schwarz Methods at the matrix level
The DDM method reads:

An Ar urtty Fy (3)
Ari Arr+ Sy ) \URT Fr + SoUP, — AraUS
Aso Aor Ut B Iy (4)
Aro Arr + 5 U{}El Fr + SlUﬁl — AplU{L

where

S, = —Ar A7 Arr
and

So = —Ars Ag_gl Aor

Convergence in two iterations
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Approximate Interface Condition at the matrix
level

The matrices Sl = —AplAl_llAlp and SQ = —AF2A2_21A2F are full
interface matrices (I' x ).

Cons

e Costly to compute

e The subdomain matrix is partly full
Approximate S; and S by sparse matrices

1. e.g. via sparse approximations to A;Z-l: SPAI

2. via local Schur complements on successive reduced “outer”
domains, “patches”, (v x ) (Roux, 2003)

The first approach gives mild results. The second one is not better

than using an overlap of depth 0 but is cheaper.
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Conclusion

e Both approaches (Neumann-Neumann and optimized Schwarz
methods) are robust (thanks to Krylov methods).

e Neumann-Neumann, FETI, .. optimal but lacks generality

e optimized Schwarz methods are general but are more difficult

to tune
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Open problems

Theory

Convergence proof or condition number estimate in a

general overlapping case

proof of the Non existence of Optimal Interface Conditions
for a general domain decomposition
Algorithm

Algebraic Optimized Interface Conditions

Interplay between the Optimized Interface Conditions and
a Coarse Grid (see Japhet, Nataf, Roux, 1998)

Systems of PDEs (versus scalar PDEs)
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Thanks!



How to use Krylov type methods ?

Schwarz method
with arbitrary interface conditions

Cl and CQ

L™ =f in Q,

W't =0 on 00 N 09, .
_ Sub(C)(N\) = b solved by Jacobi

Ci(uf™) =Ci(ul) on 99 NQs, — \

Luptl)y=f inQ, A= ; i =Ci(uy), i #]

ult™t =0 on 00, N 09, ’

Cg(ungl) = Co(ul)  on 90y Ny, b

CG, CMRES, BICG, ...
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