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Summary. We discuss some overlapping domain decomposition algorithms
for solving sparse nonlinear system of equations arising from the discretization
of partial differential equations. All algorithms are derived using the three ba-
sic algorithms: Newton for local or global nonlinear systems, Krylov for the
linear Jacobian system inside Newton, and Schwarz for linear and/or nonlin-
ear preconditioning. The two key issues with nonlinear solvers are robustness
and parallel scalability. Both issues can be addressed if a good combination
of Newton, Krylov and Schwarz is selected, and the right selection is often
dependent on the particular type of nonlinearity and the computing platform.

1 Introduction

For solving partial differential equations on large scale parallel computers,
domain decomposition is a natural choice. Overlapping Schwarz methods and
non-overlapping iterative substructuring methods are the two major classes
of domain decomposition methods [13, 14, 15]. In this paper we only consider
overlapping methods for solving large sparse nonlinear system of equations
arising from the discretization of nonlinear partial differential equations, i.e.,
for a given nonlinear function F : Rn → Rn, we compute a vector u ∈ Rn,
such that

F (u) = 0, (1)

starting from an initial guess u(0) ∈ Rn. Here F = (F1, . . . , Fn)T , Fi =
Fi(u1, . . . , un), and u = (u1, . . . , un)T . One of the popularly used techniques
for solving (1) is the so-called inexact Newton algorithms (IN) which can be
described briefly here. Suppose u(k) is the current approximate solution and
J = F ′(u(k)), a new approximate solution u(k+1) can be computed through
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the following steps: first find the inexact Newton direction p(k) by solving the
Jacobian system

Jp(k) = F (u(k)) (2)

such that ‖F (u(k)) − Jp(k)‖ ≤ ηk‖F (u(k))‖, then compute the new approxi-
mate solution

u(k+1) = u(k) − λ(k)p(k). (3)

Here ηk ∈ [0, 1) is a scalar that determines how accurately the Jacobian
system needs to be solved using, for example, Krylov subspace methods. λ(k)

is another scalar that determines how far one should go in the selected inexact
Newton direction. Sometimes when J is not explicitly available, one can use
the matrix-free version [11]. IN has several well-known features.

(a) Fast convergence. If the initial guess is close enough to the desired solution
then the convergence is very fast (quadratic) provided that the ηk’s are
sufficiently small.

(b) Non-robustness. The convergence, or fast convergence, happens only if a
good initial guess is available. Generally it is difficult to obtain such an
initial guess especially for nonlinear equations that have unbalanced non-
linearities [12]. The step length λ(k) is often determined by the components
with the strongest nonlinearities, and this may lead to an extended period
of stagnation in the nonlinear residual curve. We say that the nonlinear-
ities are “unbalanced” when λ(k) is, in effect, determined by a subset of
the overall degrees of freedom.

(c) Scalability. The parallel scalability of the method is mostly determined by
how the Jacobian system (2) is solved.

There are a number of strategies [7, 8, 10], such as linesearch, trust region,
continuation or better ways to choose the forcing term, to make the algorithm
more robust or converge faster, however, these strategies are all based on
certain global knowledge of F or J . In other words, all equations in the system
are treated equally as if they were some of the worst equations in the system.
Other ways to look at the global nature of IN are

(d) To advance from u(k) to u(k+1), all n variables and equations need to be
updated even though in many situations n can be very large, but only a
small number of components of u(k) receive significant updates.

(e) If a small number of components of the initial guess u(0) are not acceptable,
the entire u(0) is declared bad.

(f) There are two global control variables ηk and λ(k). Any slight change of
F may result in the change of ηk or λ(k), and any slight change of ηk or
λ(k) may result in some global function evaluations and/or the solving of
global Jacobian systems. For example, if the search direction p(k) has one
unacceptable component, then the entire steplength is reduced.

Note that these global operations can be expensive when n is large and when
the number of processors is large. Using domain decomposition methods, more
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localized treatments can be applied based on the location or the physical
nature of the nonlinearities, and the number of global operations can be made
small in some situations.

We should point out that the words “local” and “global” have different
meanings in the context of domain decomposition methods [15] and the con-
text of nonlinear equation solvers [7], among others. In nonlinear solvers, “lo-
cal” means a small neighborhood of the exact solution of the nonlinear system,
and “global” means a relatively large neighborhood of the exact solution of the
nonlinear system. In domain decomposition, “local” means some subregions
in the computational domain and “global” means the whole computational
domain.

All the algorithms to be discussed in the paper are constructed with a com-
bination of the three basic techniques: Newton, Krylov and Schwarz. Newton
is the basic nonlinear solver that is used for either the system defined on
the whole space or some subspaces (subdomain subspace or coarse subspace).
Krylov is the basic linear solver that is used inside a Newton solver. Schwarz is
a preconditioner for either the linear or the nonlinear solver. Many algorithms
can be derived with different combinations of the three basic algorithms. For
a given class of problems and computing platform, a different combination
might be necessary in order to obtain the best performance. The three basic
algorithms are all well understood individually, however, the construction of
the best combination remains a challenge. The same can be said for the soft-
ware. All software components are readily available in PETSc [1], but some
of the advanced combinations have to be programmed by the user.

We next define (informally) some notations for describing domain decom-
position methods. u is understood as a discrete (or coefficients of a finite
element) function defined on the computational domain Ω which is already
partitioned into a set of subdomains {Ωδ

1 , · · · , Ωδ
N}. Here Ωδ

i is an δ-extension
of Ωi, and the collection of {Ωi} is a non-overlapping partition of Ω. We de-
fine Rδ

i as a restriction operator associated with Ωδ
i and R0

i as the restriction
operator associated with Ωi. We denote uΩδ

i
as the restriction of u on Ωδ

i ,
and u∂Ωδ

i
as the restriction of u on the “boundary” of Ωδ

i . Here we use the
word “domain” to denote the mesh points in the interior of the domain and
“boundary” to denote the mesh points on the boundary of the domain. Sim-
ilarly, we may restrict the nonlinear function to a subdomain, such as FΩδ

i
.

For boundary value problems considered in this paper, we assume

FΩδ
i
(u) = FΩδ

i
(uΩδ

i
, u∂Ωδ

i
).

That is to say that there are no “global equations” in the system that may
couple the equations defined at a mesh point to equations defined at non-
neighboring mesh points.

The rest of the paper is organized as follows. In Section 2, we discuss the
most popular overlapping nonlinear domain decomposition method, Newton-
Krylov-Schwarz algorithm, and in Sections 3-6, we discuss some more ad-
vanced nonlinear methods. Some final remarks are given in Section 7.



4 Xiao-Chuan Cai

2 Newton-Krylov-Schwarz algorithms

Newton-Krylov-Schwarz (NKS) is simply the application of a linear Schwarz
preconditioner for solving the Jacobian equation (2) in the inexact Newton
algorithm [2, 3]. Depending on what type of Schwarz preconditioner is used
(additive, multiplicative, restricted, one-level, two-level, etc), there are several
NKS algorithms. Let us define the subdomain preconditioners as

Ji = Rδ
i J(Rδ

i )
T , i = 1, . . . , N,

then the additive Schwarz preconditioner can be written as

M−1
AS =

N∑

i=1

(Rδ
i )

T J−1
i Rδ

i .

Because of its simplicity, NKS has been one of the popularly used domain de-
composition methods for solving nonlinear PDEs and is the default nonlinear
solver in PETSc [1]. The nonlinear properties of NKS are exactly the same as
that of inexact Newton. For example, the initial guess has to be sufficiently
close to the solution in order to obtain convergence, and fast convergence can
be achieved when the nonlinearity is well balanced. NKS addresses well the
scalability issue (c) of IN, but not the other issues (a, b, d-f).

3 The classical Schwarz alternating algorithms

Let (u(0)

Ωδ
1
, . . . , u

(0)

Ωδ
N

) be the initial guess for all subdomains. The classical
Schwarz alternating algorithm (SA) can be described as follows:

k = 1, . . . , till convergence condition is satisfied
i = 1, . . . , N

define u
(k)

∂Ωδ
i

using {u(k−1)

Ωδ
j

, 1 ≤ j ≤ N} or {u(k)

Ωδ
j

, 1 ≤ j < i}
compute u

(k)

Ωδ
i

by solving FΩδ
i
(u(k)

Ωδ
i

, u
(k)

∂Ωδ
i

) = 0.

The algorithm doesn’t belong to the class of IN algorithms and, in general,
not share properties (a-f). The method is usually not used by itself as a
nonlinear solver because of its slow convergence, but in some cases when the
nonlinearities are isolated within some of the subdomains, the method can be
a good alternative to IN. Note that SA doesn’t involve any global operations.

4 Nonlinear additive Schwarz preconditioned inexact
Newton algorithms

The basic idea of nonlinearly preconditioned inexact Newton algorithms ([4,
9]) is to find the solution u ∈ Rn of (1) by solving an equivalent nonlinear
system



Nonlinear Domain Decomposition Methods 5

F(u) = 0 (4)

using IN. Systems (1) and (4) are said to be equivalent if they have the same
solution. For any given v ∈ Rn, we define a subdomain projection Ti(v), which
is a function with support in Ωδ

i , as the solution of the following subspace
nonlinear system

FΩδ
i
(v − Ti(v)) = 0,

for i = 1, . . . , N . Then a nonlinearly preconditioned function can be defined
as

F(u) =
N∑

i=1

Ti(u).

It can be shown that, under certain conditions, for this particular F , (1) and
(4) offer the same solution subject to the error due to different stopping condi-
tions and preconditioners. This algorithm is often referred to as the additive
Schwarz preconditioned inexact Newton algorithm (ASPIN). Sometimes we
call it a left preconditioned IN because in the linear case (i.e., F (u) = Ju− b)
F(u) = (

∑N
i=1(R

δ
i )

T J−1
i Rδ

i )(Ju− b).
When using IN to solve (4), the Jacobian of F , or its approximation, is

needed. Because of the special definition of the function F , its Jacobian can
only be given as the sum of matrix-vector multiplications and the explicit
elements of F ′ are not available.

As is known in left preconditioned linear iterative methods, the stopping
condition is often influenced by the preconditioner. The impact of the pre-
conditioner on the stopping condition can be removed if the preconditioner
is applied to the right. Unlike linear preconditioning, the switch from left to
right is not trivial in the nonlinear case. A right nonlinear preconditioner will
be discuss in a later section of the paper.

5 Nonlinear elimination algorithms

The nonlinear elimination algorithm (NE) was introduced in [12] for nonlinear
algebraic systems with high local nonlinearities. It was not introduced as a
domain decomposition method, but we include it in the paper because it is
the main motivation of the algorithm to be discussed in the next section.
Suppose, for some reason, we believe that the function F is more nonlinear
in the subdomain Ωδ

i , then we can eliminate all unknowns in this particular
subdomain and let Newton work on the rest of the variables and equations.
Let y = u|Ωδ

i
and x = u|Ω\Ωδ

i
, then using the implicit function theorem, under

some assumptions, we can solve for y in terms of x; i.e., solve

FΩδ
i
(x, y) = 0

for y, which symbolically equals to y = F−1
Ωδ

i

(x). After the elimination, we
can use the regular Newton method for the rest of the system which is more
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balanced, at least in theory,

FΩ\Ωδ
i

(
x, F−1

Ωδ
i

(x)
)

= 0.

The algorithm has some obvious advantages. We mention some of its disad-
vantages as a motivation for the algorithm to be discussed in the next section.
In practice, it is often difficult to tell which components are more nonlinear
than the others, and the situation may change from iteration to iteration.
The algorithm may introduce sharp jumps in the residual function near the
interface of x and y. Such jumps may lead to slow convergence or divergence.
Some improved versions are given in [6]. In the next section, we combine the
ideas of ASPIN and NE into a right preconditioned Newton method.

6 Nonlinear restricted additive Schwarz algorithms

In [5], a right preconditioned inexact Newton algorithm was introduced as
follows: Find the solution u ∈ Rn of (1) by first solving a preconditioned
nonlinear system

F (G(v)) = 0

for v, and then obtain u = G(v). For any given v ∈ Rn, we define a subdomain
projection Ti(v), which is a function with support in Ωδ

i , as the solution of
the following subspace nonlinear system

FΩδ
i
(v + Ti(v)) = 0,

for i = 1, . . . , N . Then the nonlinear preconditioning function is defined as

G(v) = v +
N∑

i=1

R0
i Ti(v).

Here the non-overlapping restriction operator R0
i effectively removes the sharp

jumps on the interfaces of the overlapping subdomains. In the linear case

G(v) = v −
(

N∑

i=1

(R0
i )

T J−1
i Rδ

i

)
(Jv − b),

which can be regarded as a restricted additive Schwarz preconditioned Richard-
son method.

This preconditioner doesn’t have to be applied at every outer Newton iter-
ation. It is used only when some local high nonlinearities are sensed, somehow.
Below we describe the overall algorithm (NKS-RAS). The goal is to solve equa-
tion (1) with a given initial guess u(0). Suppose that we are at iteration k and
u(k) is the current approximate solution.
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Step 1 (The Nonlinearity Checking Step): Check local and global stopping
conditions.
• If the global condition is satisfied, stop.
• If local conditions indicate that nonlinearities are not balanced, go to

Step 2.
• If local conditions indicate that nonlinearities are balanced, set ũ(k) =

u(k), go to Step 3.

Step 2 (The RAS Step): Solve local nonlinear problems on the overlap-
ping subdomains to obtain the subdomain corrections Ti(u(k))

FΩδ
i

(
u(k) + Ti(u(k))

)
= 0

for i = 1, · · · , N .
Drop the solution in the overlapping part of the subdomain and compute
the global function G(u(k)) and set

ũ(k) = G
(
u(k)

)
.

Go to Step 3.

Step 3 (The NKS Step): Compute the next approximate solution u(k+1)

by solving the following system

F (u) = 0

with one step of NKS using ũ(k) as the initial guess.
Go to Step 1.

The nonlinearity checking step is important, however, we only have a few
ad hoc techniques such as computing the residual norm subdomain by sub-
domain (or field by field in the case of multi-physics applications). If some
of the subdomain (or sub-field) norms are much larger than the rest of the
subdomains, we label these subdomains as highly nonlinear subdomains and
proceed with the RAS elimination step. Otherwise, when the nonlinearity is
more or less balanced we bypass the RAS step and go directly to the global
NKS step. The subdomain nonlinear systems in Step 2 do not need to be
solved very accurately since the solutions are used only to construct an initial
guess for Step 3. In NKS-RAS, a nonlinear system is setup on each subdomain,
but in practice, not all subdomain nonlinear problem needs to be solved. In
the not-too-nonlinear regions, the solver may declare to have converged in 0
iteration.

7 Concluding remarks

In this paper, we gave a quick overview of overlapping domain decomposition
methods for solving nonlinear partial differential equations. The two key is-
sues of nonlinear methods are robustness and scalability. Both issues can be
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addressed by using some combinations of the three basic algorithms: Newton,
Krylov and Schwarz. Several algorithms are presented in the paper together
with some of their advantages and disadvantages. Depending on the particular
types of nonlinearities in the problem and the computing platform, different
combinations of the three basic algorithms may be needed in order to obtain
the best performance and robustness. Due to page limit, applications were
not discussed in the paper. Some of them can be found in references cited.
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