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This volume contains a selection of 53 papers submitted to the 24th International
Conference on Domain Decomposition Methods, hosted by the University of Bergen
in cooperation with the Western Norway University of Applied Sciences, and held
in Spitsbergen at Svalbard, Norway, February 6-10, 2017.

Background of the Conference Series

With its first meeting in Paris in 1987, the International Conference on Domain
Decomposition Methods has been held in 15 countries in Asia, Europe, and North
America, and now for the first time north of 78° in the kingdom of the Polar Bears.
The conference is held at roughly 18-months intervals. A complete list of 25 meet-
ings appears below.

Domain decomposition is often seen as a form of divide-and-conquer for mathe-
matical problems posed over a physical domain, reducing a large problem into a col-
lection of smaller problems, each of which is much easier to solve computationally
than the undecomposed problem, and most or all of which can be solved indepen-
dently and concurrently, and then solving them iteratively in a consistent way. Much
of the theoretical interest in domain decomposition algorithms lies in ensuring that
the number of iterations required to converge is very small. Domain decomposition
algorithms can be tailored to the properties of the physical system as reflected in
the mathematical operators, to the number of processors available, and even to spe-
cific architectural parameters, such as cache size and the ratio of memory bandwidth
to floating point processing rate, proving it to be an ideal paradigm for large-scale
simulation on advanced architecture computers.

The principle technical content of the conference has always been mathemati-
cal, but the principle motivation has been to make efficient use of distributed mem-
ory computers for complex applications arising in science and engineering. While
research in domain decomposition methods is presented at numerous venues, the
International Conference on Domain Decomposition Methods is the only regularly
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occurring international forum dedicated to interdisciplinary technical interactions
between theoreticians and practitioners working in the development, analysis, soft-
ware implementation, and application of domain decomposition methods.

As we approach the dawn of exascale computing, where we will command 1018
floating point operations per second, clearly efficient and mathematically well-
founded methods for the solution of large-scale systems become more and more
important-as does their sound realization in the framework of modern HPC archi-
tectures. In fact, the massive parallelism, which makes exascale computing possible,
requires the development of new solutions methods, which are capable of efficiently
exploiting this large number of cores as well as the connected hierarchies for memory
access. Ongoing developments such as parallelization in time asynchronous iterative
methods, or nonlinear domain decomposition methods show that this massive par-
allelism does not only demand for new solution and discretization methods, but also
allowsto fosterthe development of new approaches.

Here is a list of the 25 first conferences on Domain Decomposition:

. Paris, France, January 7-9, 1987

. Los Angeles, USA, January 14-16, 1988

. Houston, USA, March 20-22, 1989

. Moscow, USSR, May 21-25, 1990

. Norfolk, USA, May 6-8, 1991

. Como, Italy, June 15-19, 1992

. University Park, Pennsylvania, USA, October 27-30(1, 1993
. Beijing, China, May 16-19, 1995

. Ullensvang, Norway, June 3-8, 1996

. Boulder, USA, August 10-14, 1997

. Greenwich, UK, July 20-24, 1998

. Chiba, Japan, October 25-20, 1999

. Lyon, France, October 9-12, 2000

. Cocoyoc, Mexico, January 6-11, 2002

. Berlin, Germany, July 21-25, 2003

. New York, USA, January 12-15, 2005

. St. Wolfgang-Strobl, Austria, July 3-7, 2006

. Jerusalem, Israel, January 12-17, 2008

. Zhangjiajie, China, August 17-22, 2009

. San Diego, California, USA, February 7-11, 2011

. Rennes, France, June 25-29, 2012

. Lugano, Switzerland, September 16-20, 2013

. Jeju Island, Korea, July 6-10, 2015

. Spitsbergen, Svalbard, Norway, February 6-10, 2017
. St. John’s, Newfoundland, Canada, July 23-27, 2018
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International Scientific Committee on Domain Decomposition Methods

 Petter Bjorstad, University of Bergen, Norway

+ Susanne Brenner, Louisiana State University, USA
* Xiao-Chuan Cai, CU Boulder, USA

* Martin Gander, University of Geneva, Switzerland
» Laurence Halpern, University Paris 13, France

+ David Keyes, KAUST, Saudi Arabia

* Hyea Hyun Kim, Kyung Hee University, Korea

* Axel Klawonn, Universitit zu K6ln, Germany

» Ralf Kornhuber, Freie Universitét Berlin, Germany
» Ulrich Langer, University of Linz, Austria

* Alfio Quarteroni, EPFL, Switzerland

e Olof Widlund, Courant Institute, USA

+ Jinchao Xu, Penn State, USA

* Jun Zou, Chinese University of Hong Kong, Hong Kong

About the 24th. Conference

The twenty-fourth International Conference on Domain Decomposition Methods
had close to 200 participants from about 30 different countries. The conference con-
tained 12 invited presentation selected by the International Scientific Committee,
fostering both experienced and younger scientists, 19 minisymposia around specific
topics, 3 contributed sessions, and a poster session. The present proceedings con-
tain a selection of 53 papers grouped into three separate groups: 8 plenary papers,
41 minisymposia papers, and 4 contributed papers.

Sponsoring Organizations

» Department of Informatics, University of Bergen
» Simula Research Laboratory

» Faculty of Engineering and Science, WNUAS

* SparebankenVest Bergen

» The Research Council of Norway
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Liv Rebecca Aae (Insititute for Informatics, University of Bergen)
Petter E. Bjorstad (Insititute for Informatics, University of Bergen)
Sushmita Gupta (Insititute for Informatics, University of Bergen)
Talal Rahman (Faculty of Engineering and Science, WNUAS)

Plenary Presentations

An additive Schwarz analysis of multiplicative Schwarz methods, Sue Brenner
(Louisiana State University, USA)

On nonlinear adaptivity with heterogeneity, Jed Brown (University of Colorado
Boulder, USA)

Overlapping methods for high-contrast multiscale problems, Juan Carlos Galvis-
Arrieta (Universidad Nacional de Colombia)

Domain Decomposition for high frequency Helmholtz problems, Ivan Graham
(University of Bath, UK)

PDE based mesh generation: domain decomposition approaches, Ron Haynes
(Memorial University, Canada)

Robust Preconditioners for Coupled Problems, Xiaozhe Hu (Tufts University,
USA)

Modeling and discretization of thin inclusions for flow in deformable porous me-
dia, Jan Nordbotten (University of Bergen, Norway)

Domain decomposition based methods for multiphysics problems, Alfio Quar-
teroni (Ecole polytechnique fédérale de Lausanne, Switzerland)

Recent advances on adaptive multilevel BDDC methods for div- and curl-
conforming spaces, Stefano Zampini (KAUST, Saudi Arabia)

Communication avoiding iterative solvers and preconditioners, Laura Grigori
(Inria Paris and Laboratoire J.L. Lions UPMC, France)

Impact of high abstraction/high performance finite element software in biomedi-
cal computing, Marie Rognes (Simula Research Laboratory, Norway)

Scalable multilevel preconditioners for cardiac electro-mechanics, Simone Scac-
chi (University of Milano, Italy)
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Robust Block Preconditioners for Biot’s Model

James H. Adler, Francisco J. Gaspar, Xiaozhe Hu, Carmen Rodrigo, and Ludmil
T. Zikatanov

Abstract In this paper, we design robust and efficient block preconditioners for the
two-field formulation of Biot’s consolidation model, where stabilized finite-element
discretizations are used. The proposed block preconditioners are based on the well-
posedness of the discrete linear systems. Block diagonal (norm-equivalent) and
block triangular preconditioners are developed, and we prove that these methods
are robust with respect to both physical and discretization parameters. Numerical
results are presented to support the theoretical results.

1 Introduction

In this work, we study the quasi-static Biot’s model for soil consolidation. For lin-
early elastic, homogeneous, and isotropic porous medium, saturated by an incom-
pressible Newtonian fluid, the consolidation is modeled by the following system of
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partial differential equations (see [8]):

equilibrium equation: —dive’ +aVp=g, inQ, (1)
constitutive equation: ¢’ =2ue(u)+Adiv(u)l, inQ, (2)

1
compatibility condition: &(u) = 3 (Vu+Va'), inQ, 3)
Darcy’s law: w =—KVp, inQ, @
continuity equation: —¢ divdyu —divw = f, inQ, (&)

where A and p are the Lamé coefficients, ¢ is the Biot-Willis constant (assumed to
be one without loss of generality), K is the hydraulic conductivity (ratio of the per-
meability of the porous medium to the viscosity of the fluid), / is the identity tensor,
u is the displacement vector, p is the pore pressure, ¢’ and € are the effective stress
and strain tensors for the porous medium, and w is the percolation velocity of the
fluid relative to the soil. The right-hand-side term, g, is the density of applied body
forces and the source term f represents a forced fluid extraction or injection process.
Here, we consider a bounded open subset, 2 C R?, d = 2,3 with regular boundary
I'. This system is often subject to the following set of boundary conditions:

p=0, for xel;,, o'n=0, for xelj,
u=0, for xeI'.,, w-n=0, for xel,

where n is the outward unit normal to the boundary, I’ = I'; UT ., with I; and
I being open (with respect to I') subsets of I" with nonzero measure. These, or
similar conditions, along with appropriate initial conditions for the displacement
and pressure, complete the system.

Suitable discretizations yield a large-scale linear system of equations to solve at
each time step, which are typically ill-conditioned and difficult to solve in prac-
tice. Thus, iterative solution techniques are usually considered. For the coupled
poromechanics equations considered here, there are two typical approaches: fully-
coupled or monolithic methods and iterative coupling methods. Monolithic tech-
niques solve the resulting linear system simultaneously for all the involved un-
knowns. In this context, efficient preconditioners are developed to accelerate the
convergence of Krylov subspace methods and special smoothers are designed in a
multigrid framework. Examples of this approach for poromechanics are found in
[7, 14, 16, 25, 17, 23, 5] and the references therein. Iterative coupling [22, 20],
in contrast, is a sequential approach in which either the fluid flow problem or
the geomechanics part is solved first, followed by the solution of the other sys-
tem. This process is repeated until a converged solution within a prescribed tol-
erance is achieved. The main advantage of iterative coupling methods is that ex-
isting software for simulating fluid flow and geomechanics can be reused. These
type of schemes have been widely studied [28, 9, 4, 6]. In particular, in [11] and
[31] a re-interpretation of the four commonly used sequential splitting methods as
preconditioned-Richardson iterations with block-triangular preconditioning is pre-
sented. Such analysis indicates that a fully-implicit method outperforms the con-
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vergence rate of the sequential-implicit methods. Following this idea a family of
preconditioners to accelerate the convergence of Krylov subspace methods was re-
cently proposed for the three-field formulation of the poromechanics problem [10].

In this work, we take the monolithic approach and develop efficient block precon-
ditioners for Krylov subspace methods for solving the linear systems of equations
arising from the discretization of the two-field formulation of Biot’s model. These
preconditioners take advantage of the block structure of the discrete problem, de-
coupling different fields at the preconditioning stage. Our theoretical results show
their efficiency and robustness with respect to the physical and discretization param-
eters. Moreover, the techniques proposed here can also be used for designing fast
solvers for the three-field formulation of Biot’s model.

The paper is organized as follows. Section 2 introduces the stabilized finite-
element discretizations for the two-field formulation and the basics of block pre-
conditioners. The proposed block preconditioners are introduced in Section 3. Fi-
nally, in Section 4, we present numerical experiments illustrating the effectiveness
and robustness of the proposed preconditioners and make concluding remarks in
Section 5.

2 Two-Field Formulation

First, we consider the two-field formulation of Biot’s model (1)-(5), where the un-
knowns are the displacement v and the pressure p. By considering appropriate
Sobolev spaces and integration by parts, we obtain the following variational form:
find u(r) € H} () and p(t) € H} (L), such that

a(u,v) — a(dive,p) = (g,v), Vv e Hy(Q), (6)
—a(divou,q) —ay(p,q) = (f,q), VYq¢€ H(} (Q), (7

where
a(’u,,v):Zu/ s(u):s(v)—&—l/ divudive and a,(p,q) :/ KVp-Vgq.
Q Q Q

Here, we assume the above holds for fixed values of 7 in some time interval, (0, #4y]-
The system is then completed with suitable initial data «(0) and p(0).

2.1 Finite-Element Method

We consider two stable discretizations for the two-field formulation of Biot’s model
proposed in [29]: P;-IP; elements and the Mini element with stabilization. The fully
discretized scheme at time t,,, n = 1,2, ... is as follows:

Find u} € V}, C H}(Q) and p}! € Q), C H} (L), such that,
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a(quvh) - a(diV'U;”pZ) = (g(tn)av/’t)a V’Uh S ‘/h7 (8)
— a(divoul,qn) — ap(pqn) — B (Vo Van) = (f(ta)sqn)s  Yqn € On, (9)

where dyul! == (u} —u) ") /7, o,p := (P} — p} ')/, and 7 represents the stabi-
lization parameter. Here, V}, and O}, come from the IP;-IP; or Mini element. At each
time step, the linear system has the following two-by-two block form:

. _ (Ay aBT _f(u | fu
dr=>b, &%-(aB —TAp—nthp)’m_(p)’andb_<fp)’ (10)

where a(u,v) = Ay, —(divu,q) — B, a,(Vp,Vq) = Ap, and (Vp,Vq) — L, rep-
resent the discrete versions of the variational forms.

2.2 Block Preconditioners

Next, we introduce the general theory for designing block preconditioners of Krylov
subspace iterative methods [24, 27]. Let X be a real, separable Hilbert space
equipped with norm || - || x and inner product (-,-)x. Also let &7 : X — X' be
a bounded and symmetric operator induced by a symmetric and bounded bilinear
form Z(-,),1.e. (Fx,y) =.L(x,y). We assume the bilinear form is bounded and
satisfies an inf-sup condition:

) Lz,
12 (z,y)| < Blzlx|yllx, Y&,y € X and inf sup (z,y)

—= >y > 0.
zeX yex |zl x|yl x

(1)

2.2.1 Norm-equivalent Preconditioner

Consider a symmetric positive definite (SPD) operator .# : X' — X as a precondi-
tioner for solving o7z = b. We define an inner product (x,y) ,-1 := (.#'x,y) on
X and the corresponding induced norm is ||« ||2‘///,1 = (x,x) ,-1.Itis easy to show
that # o/ : X — X is symmetric with respect to (-,-) ,-1. Therefore, we can use
A as a preconditioner for the MINRES algorithm and use the following theorem
for the convergence rate of preconditioned MINRES.

Theorem 1. [18] If ™" is the m-th iteration of MINRES and x is the exact solution,
then,

"L < 20" 7°.ar (12)
where T8 = of (x — x*) is the residual after the k-th iteration, p = % and
k(A <) denotes the condition number of M .

In [27], Mardal and Winther show that, if the well-posedness conditions, (11),
hold, and .Z satisfies
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cilzlx < llzl?, 1 < 2l (13)

then, 7 and .# are norm-equivalent and k(A o) < % This implies that p <

Eig;i:; Thus, if the original problem is well-posed and the constants ¢; and c; are

independent of the physical and discretization parameters, then the convergence rate
of preconditioned MINRES is uniform, hence .# is a robust preconditioner.

2.2.2 FOV-equivalent Preconditioner

In this section we consider the class of field-of-values-equivalent (FOV-equivalent)
preconditioners .}, : X' — X, for GMRES. We define the notion of FOV-equivalence
after the following classical theorem on the convergence rate of the preconditioned
GMRES method.

Theorem 2. [13, I12] If x™ is the m-th iteration of the GMRES method precondi-
tioned with /1 and x is the exact solution, then

22 m
||.//LJZ{(.’1}—;13'")||2///_1 < (1 - TZ) H.ﬂLJZ{(.’B—a;O”B/[_I’ (14)
where, for any x € X,
¥y < (//luzfm,a:)///q H///LJZ{.’BH//IA <7rT (15)
T (zx) (e P

If the constants X and 1" are independent of the physical and discretization pa-
rameters, then .} is a uniform left preconditioner for GMRES and is referred to as
an FOV-equivalent preconditioner. In [24], a block lower triangular preconditioner
has been shown to satisfy (15) based on the well-posedness conditions, (11), for
Stokes/Navier-Stokes equations. More recently, the same approach has been gener-
alized to Maxwell’s equations [2] and Magnetohydrodynamics [26].

Similar arguments also apply to right preconditioners for GMRES, .2y : X' —
X, where the operators, .#, and ./, are FOV equivalent if, for any =’ € X’,

5 < (A My ) 4 || A My || 4 <7

N COC OV 2|l

(16)

Again, if ¥ and 1" are independent of the physical and discretization parameters,
Ay is a uniform right preconditioner for GMRES. Such an approach leads to block
upper triangular preconditioners.
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3 Robust Preconditioners for Biot’s Model

In this section, following the framework proposed in [24, 27] and techniques re-
cently developed in [26], we design block diagonal and triangular preconditioners
based on the well-posedness of the discretized linear system at each time step. First,
we study the well-posedness of the linear system (10). The analysis here is similar
to the analysis in [29]. However, we make sure that the constants arising from the
analysis are independent of any physical and discretization parameters.

The choice of finite-element spaces give X = V}, X Oy, and the finite-element
pair satisfies the following inf-sup condition (see [30]),

(divw,q)
sup ——2 > Rllql — E°R||Vqll, Vg€ Q. (17)
vev, vl

Here, }/g > 0 and £° > 0 are constants that do not depend on the mesh size. More-
over, if we use the Mini-element, 60 =0.
For « = (u, p)’, we define the following norm,

2
(04
)% = llwl,, +llpli, +n#?lpli, + & Pl (18)

2
where [[u[|3, :=a(u,w). [pl3, :==a,(VP,Vp). lIpllZ, == (VP,VP). E = /A + 7.
and d = 2 or 3 is the dimension of the problem. With { defined as above, it holds that
|v]la,, < VdE|v]|1,and we can reformulate the inf-sup condition, (17), as follows,

(Bv,q) (Bv,q) b7 £° V8 3
sup > sup > qll - h(|Vql| =: = llql — ZAlIV4ll,
S ol =S agol \/d»gll [ vac V4l CII [ z V4l

(19)
where ¥ := ¥3/v/d and & = £°//d.
Noting that for d = 2,3, 2u(e(v),e(v)) < a(v,v) < 2u +dr)(e(v),e(v)).
Thus, (dive,dive) < d(e(v),&(v)) and,

2 . 1
&*|1Bo* = (A + 7“)Ildlvvll2 <oz, = lIBvl| < levllAu- (20)
This allows us to show that linear system (10) is well-posed.
Theorem 3. For x = (u, p) and y = (v,q), let
Z(x,y) = (Auu,v)+ a(Bv,p) + a(Bu,q) — 1(KVp,Vq) —nh*(Vp,Vq). (21)

Then, (11) holds and <7 defined in (10) is an isomorphism from X to X' provided
that the stabilization parameter, 1, satisfies 1 = 0 ‘g—; with & > 0. Moreover, the
constants Y and B are independent of the physical and discretization parameters.
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Proof. Based on the inf-sup condition (17) and (19), for any p, there exists w €
Vi such that (Bw, p) > (% pl| - $4Vp]]) wlla, and [wlla,, = || For given
(u,p) € Vj, x O, we choose v =u+ Ow, 6 = ﬁ% and g = —p and then have,

Z(xz,y) = (Ayu,u+ 0w) + a(B(u+ 0w), p) — a(Bu,p)
+t(KVp,Vp)+nh*(Vp,Vp)

50 B’ 750
Z||U||/24u—19HUHAuTHP||+l9 '22 Ipll?— o e ShlVpllipl
5 o?
+T\\P||§p+??§2h2|\vp\|2
T
”%”Au 1 —%/2 0 0 II%IIAH
2 pl 92 o —v/20]| | el
— | Z&nlvrl 0 —0/28/8 0| | ¢&nlVp|
Vllplla, 00 0 1/ \V7lplla,
If 0 < ¥ < min{2, 2—‘2}, the matrix in the middle is SPD and there exists ¥, such that
1o

2
o -
L(@y)> 1 (nuniu B P Czézhzlvpl2+f||plli,,) > Flelk,

2
where 7 = yymin{y3,&2/8}. Also, it is straightforward to verify [|(v,q)|% <
7*||(u, p) || % and the boundedness of .# by continuity of each term and the Cauchy-
Schwarz inequality. Therefore, £ satisfies (11) with y = 7/7.

Remark 1. Note that the choice of { = /A +2u1/d is essential to the proof, but is
consistent with previous implementations [3, 29]. Additionally, choosing any 6 > 0
is sufficient to show the well-posedness of the stabilized discretization. However,
for eliminating non-physical oscillations of the pressure approximation seen in prac-
tice [3], this is not sufficient, and § should be sufficiently large. For example, in 1D,
6 = 1/4is chosen.

3.1 Block Diagonal Preconditioner

Now that we have shown (11) and that the system is well-posed, we find SPD op-
erators such that (13) is satisfied. One natural choice is the Reisz operator corre-
sponding to the inner product (-,-)x, (Bf,x)x = (f,z), Vf € X', x € X. For
the two-field stabilized discretization and the norm || - || x defined in (18), we get

(A 0 :
2=\ 0 Ayl + EM) (22)
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where M is the mass matrix of the pressure block. Since %) satisfies the norm-
equivalent condition with ¢; = c3 = 1, by Theorem 3, it holds that k(#p</) = O'(1).

In practice, applying the preconditioner Zp involves the action of inverting the
diagonal blocks exactly, which is very expensive and infeasible. Therefore, we re-
place the diagonal blocks by their spectrally equivalent SPD approximations,

Hy, 0
()

where
Clu(Hyu,u) < (A;lu,u) < cpu(Hyu,u) (23)

2
o _
c1p(Hpp.p) < ((TAp +nh*L, + @M) 'p,p) <cap(Hpp,p).  (24)

Again, .#p and &7 are norm-equivalent and x(.#p<?) = €(1) by Theorem 3.

3.2 Block Triangular Preconditioners

Next, we consider block triangular preconditioners for the stabilized scheme, .<7. For
simplicity of the analysis, we modify .27 slightly by negating the second equation.
We consider two kinds of block triangular preconditioners,

B Au 0 R H,' 0 o 2
P\ -aB A, kL, + HM am/f/L‘(aBH;l) @)

and block upper triangular preconditioners,
~1
Ay aB” H-' aBT\
By = 2 and Ay = % ,,_ (26)
v (0 rA,,+nh2Lp+‘g2M> v ( 0 le)
According to Theorem 2, we need to show that these block preconditioners sat-

isfy the FOV-equivalence, (15) and (16). We first consider the block lower triangular
preconditioner, Ay .

Theorem 4. There exist constants X and Y, independent of discretization or physi-
cal parameters, such that, for any x = (u,p)T # 0,

(BLA T, @) (31 | BLA | (55,1

r< ,
(maﬂf)(t@D)—l Hazll(%)-l

<T

— )

provided that n = 52‘—; with § > 0.

Proof. By direct computation,
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(%LJZ%?B,.’E)(%D)—I = (uau)Au + (X(BTP,'U,) + T(pap)Ap
+nh*(Lyp,p) + o (BA,'B  p, p)
> 5o (Jluld, +7llpli, +napl, + a7 pl2 L) .

Note that, due to the inf-sup condition (17),

S
Pl = ZhlIVpll

(Bv,p) _ 18
- g

[olla,, — ¢

IB7 pllt = sup
v
Therefore, since 11 = 52‘—; with 6 > 0 and by choosing W <6<,

(B @) 51 2 5o [lullk,, +lpl3, + R lpI3,

2
a2 (Ygﬂpn —Ehnwn)

> o [Jul, +7llpI3,

2a? 5 1)\ a?
-0 B+ (14 55— g ) GaEWITHIR]

2 2 R,y At
> XX ||U||Au+f||PHAp+?h HPHLP"'?HPH

=1 Z(x, ) (g, 1

where Xy :=min{1,(1—6)y3, (1 + .»;% - %) %2} This gives the lower bound. The
upper bound 1 can be obtained directly from the continuity of each term, the
Cauchy-Schwarz inequality, and the fact that [|B p|| , 1 < %H p|| obtained by (20).

Similarly, we can show that the other three block preconditioners are also FOV-
equivalent with <7 and, therefore, can be used as preconditioners for GMRES. Due
to the length constraint of this paper and the fact that the proofs are similar, we only
state the results here.

Theorem 5. If the conditions (23) and (24) hold and ||I — HyAw||a,, < p with 0 <
p < 1, and there exist constants X and Y, independent of discretization and physical
parameters, such that, for any = (u, p)T # 0, it holds that

(%Lﬂw,w)({//B)—l ||%Lﬂw||(uﬂp)71

@)yt Izl

<7,

provided that N = 52‘—; with § > 0.

Theorem 6. There exist constants X and Y, independent of discretization or physi-
cal parameters, such that, for any 0 # x’' € X', it holds that
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(4 Boe @)y | S B0 |9y _

(CC/,CC/)@D ’ ”m/”%D

X<

provided that N = 52‘—; with § > 0.

Theorem 7. If the conditions (23) and (24) hold and ||I — HyA||a,, < p with 0 <
p < 1, and there exist constants X and Y, independent of discretization or physical
parameters, such that, for any 0 # x' € X', it holds that

(A My ).y || A My

r<
($/>$/)///D 7 ||m/||=///D

provided that N = 52‘—; with § > 0.

Remark 2. The block upper preconditioner %y here is related to the well-known
fixed-stress split scheme [22]. In fact, without the stabilization term, i.e., n =0, it is
exactly a re-cast of the fixed-stress split scheme [31]. Moreover, {? = A +2u/d =:
Kgr, where Ky, is the drained bulk modulus of the solid. This is exactly the choice
suggested in [21]. Here, we give a rigorous theoretical analysis when the fixed-
stress split scheme is used as a preconditioner. Our analysis is more general in the
sense that . is an inexact version of the fixed-stress split scheme, and we have
generalized it to the finite-element discretization with stabilizations.

4 Numerical Experiments

Finally, we provide some preliminary numerical results to demonstrate the robust-
ness of the proposed preconditioners. As a discretization, we use the stabilized P;-
Py scheme described in [29] and implemented in the HAZMATH library [1].

We consider a 3D footing problem as in [15], on the domain, = (—32,32) x
(—32,32) x (0,64). This is shown in the left side of Figure 1, and represents a
block of porous soil. A uniform load of intensity 0.1N /m? is applied in a square of
size 32 x 32m? at the middle of the top of the domain. The base of the domain is
assumed to be fixed while the rest of the domain is free to drain. For the material
properties, the Lame coefficients are computed in terms of the Young modulus, E,
and the Poisson ratio, v: A = (172{,5% and U = jﬁ Since we want to study
the robustness of the preconditioners with respect to the physical parameters, we fix
E =3 x 10*N/m? and let v change in the experiments. The right side of Figure 1
shows the results of the simulation, demonstrating the deformation due to a uniform
load.

We first study the performance of the preconditioners with respect to the mesh
size h and time step size 7. Therefore, we fix K = 10~%m? and v = 0.2. We use flex-
ible GMRES as the outer iteration with a relative residual stopping criteria of 107°.
For #p, 41, and 4, the diagonal blocks are solved inexactly by preconditioned
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Fig. 1 Computational domain and boundary conditions
0o

GMRES with a tolerance of 1072, The results are shown in Table 1. We see that
the block preconditioners are effective and robust with respect to the discretization
parameters A and 7.

Table 1 Iteration counts for the block preconditioners (* means the direct method for solving
diagonal blocks is out of memory)

Bp By, By AMp MY My
| T T A T T | W 1 A S W | P R U | P S
T 4 8 16 32|[4 8 16 32(|4 8 16 32|(4 8 16 32(|4 8 16 32||4 8 16 32
0.1 778 *[|556 *[|444 *|889 9|66 8 8|66 8 8
001 |77 8 *||556 *||[445 *|[889 9|[668 8|668 8
0.001 |77 8 *|[556 *||556 *889 9(|66 8 8|66 8 8
0.0001{[7 7 8 *||55 6 *||556 *|[889 9|76 8 8|67 8 8

Next, we investigate the robustness of the block preconditioners with respect to
the physical parameters K and v. We fix the mesh size h = 1/16 and time step
size T = 0.01. The results are shown in Table 2. From the iteration counts, we can
see that the proposed preconditioners are quite robust with respect to the physical
parameters.

Table 2 Iteration counts when varying K or v

v =0.2 and varying K K = 107% and varying v
11072 107*10°° 10°® 10~ °}[0.1 0.2 0.4 0.45 0.49 0.499

PBpld 7T 8 8 8 8 7 8 11 11 12 12
Br|2 5 6 6 6 6 5 6 8 8 8 9
Bul3 4 5 5 5 5 4 5 6 6 5 4
Mp|5 8 9 9 9 9 8 9 12 13 14 13
M5 T 8 8 8 8 7 8 11 11 12 12
Myl5 T 8 8 9 8 7 8 7 8 17 11
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5 Conclusions

We have shown that the stability of the discrete problem, using stabilized finite
elements, provides the means for designing robust preconditioners for the two-field
formulation of Biot’s consolidation model. Our analysis shows uniformly bounded
condition numbers and uniform convergence rates of the Krylov subspace methods
for the preconditioned linear systems. More precisely, we prove that the convergence
is independent of mesh size, time step, and the physical parameters of the model.

Current work includes extending this to non-conforming (and conforming) three-
field formulations as in [19]. For discretizations that are stable independent of the
physical parameters, uniform block diagonal preconditioners can be designed using
the framework developed here. Block lower and upper triangular preconditioners for
GMRES can also be constructed in a similar fashion. In addition to their excellent
convergence properties, the triangular preconditioners naturally provide an (inexact)
fixed-stress split scheme for the three-field formulation.
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An additive Schwarz analysis for multiplicative
Schwarz methods: General case

Susanne C. Brenner

1 Introduction

Multiplicative and additive Schwarz methods are two main classes of iterative meth-
ods since the times of Gauss and Jacobi. Traditionally the analyses of these two
classes of methods follow different paths. On one hand, the theory for additive
Schwarz methods [8, 12, 2, 16, 9, 14, 13, 15, 6, 11], like the theory for the classical
Jacobi method, is relatively simple. On the other hand, the theory for multiplicative
Schwarz methods [10, 3, 16, 19, 18,9, 4, 1, 17, 13, 15, 11], like the theory for the
classical Gauss-Seidel method, can be quite sophisticated.

An analysis of multiplicative Schwarz methods that is based on the additive the-
ory was carried out in [5]. It is restricted to the case where the subspace corrections
are based on symmetric positive definite (SPD) solvers. The goal of this work is to
extend the results in [5] to multiplicative Schwarz methods with general subspace
corrections. As a by-product we recover the main result in [17], namely a formula
for the norm of product operators.

The rest of the paper is organized as follows. First we review the Gauss-Seidel
method in Section 2. The analysis of this prototypical multiplicative Schwarz
method provides motivations and guidance for the theory in this paper and [5]. We
introduce a general framework of multiplicative Schwarz methods in Section 3 and
recall the fundamental lemma for additive Schwarz theory in Section 4. The key
observation that allows the extension of the formulas in Section 2 to general multi-
plicative Schwarz methods is presented in Section 5. The main results of the paper
are then derived in Section 6. Finally, the connection of our theory to [17] is dis-
cussed in Section 7.

Susanne C. Brenner
Department of Mathematics and Center for Computation and Technology, Louisiana State Univer-
sity, Baton Rouge, LA 70803, USA, e-mail: brenner@math.lsu.edu
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2 The Gauss-Seidel Method

The additive Schwarz analysis for multiplicative Schwarz methods is motivated and
guided by looking at the analysis of the Gauss-Seidel method through the lens of
additive Schwarz theory.

Let A € R™" be a SPD matrix and b € R”. The (forward) Gauss-Seidel method
for the system Ax = b is defined by the iteration step

Xnew = Xold + (L +D) 7! (b — Axoia), (1)

where L. and D are the strictly lower triangular part and the diagonal part of A
respectively. The error propagation for (1) is described by

X —Xpew = (I— (L+D)'A) (x — X14) = (I-BA)(X — Xo1a), )

where I is the 7 x n identity matrix and B = (L + D)L
The norm of the iteration matrix I — BA in the matrix norm || - |4 induced by the
inner product (v,w)s = w'Av is given by the following standard formula:

IT—BA|3 = [|(1-BA)*(I-BA)||a = [|(I-B‘A)(I-BA)|4, 3)

where (I—BA)* denotes the adjoint of I — BA with respect to (-, -)a. It follows from
(3), the spectral theorem and the Rayleigh quotient formula that
IT—BA|X = Amax (I— (B*+B—B'AB)A)
=1—Amin((B*+B —B'AB)A) 4
min viAY .
veR" v/ (Bt + B — BtAB) 1y

=1—-

A simple calculation yields
(B'+B—B'AB) ! = (1+ D 'U)'D(I+D'U), (5)

where U = Lt is the strictly upper triangular part of A. It is easy to see that (5) can
be rewritten as

(B'+B-B'AB) '=A+ (D 'U)'D(D'U). (6)
Combining (4) and (5), we have a formula

v Av
I-BA|; =1—mi 7
| I vel vi(I+ D-1U)YD(I+ D-10)v ™

for the norm of the iteration matrix I — BA. Similarly the formula
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vtAv
I-BA|% =1 — mi
| I vekr VAV - vi(D-10)'D(D-1U)v
1

=1 ®)

1+ max V(D 'U)DMD U

vER” |lv]|a=1

follows from (4) and (6).
Since L+ D is the lower triangular part of A, we can apply forward substitutions
to obtain
n
(L+D) '"A=Y'X;,
i=1

where X; € R"*" is determined recursively by
i—1

X, :Ti(I— ij),
j=1

T; =e;(e!Ae;) 'elA, and ey, ..., e, are the canonical basis vectors in R”.
It follows that

I—-BA— (I—’:leXi) ~X, = (I—:t;Xi) —T,,(I—nZ:Xj)
- <I—Tn>(1—':2:x,-) ST,

Hence (7) and (8) are also formulas for the norm of the product (I—T),)---(I—Ty).

Below we will derive similar formulas for general multiplicative Schwarz meth-
ods. The key observation is that even though the explicit formula (5) does not exist
in the general case, we can find an expression for v!(Bt + B — B'AB)~lv through
the additive Schwarz theory.

3 Multiplicative Schwarz Methods

Let V be a finite dimensional vector space, a(-,-) be a SPD bilinear form on V, and
o € V', the dual space of V. We consider the following problem:
Find u € V such that

a(u,v) = {(a,v) Vv ev, 9)

where (-,-) denotes the canonical bilinear form on V' x V.
We can rewrite (9) as
Au=q (10)

where A : V — V' is defined by



4 Susanne C. Brenner
(Aw,v) = a(w,v) Yv,weV. (11)
The operator A is SPD in the sense that
(Aw,v) = (Av,w) VYvweV and (Av,v) >0 VveV\{0}.
We will denote by L* the adjoint of a linear operator L : V — V with respect to

a(-,-), ie,
a(Lv,w) = a(v,L*w) YvweV,

and for a linear operator M : W — V, the operator M’ : V' — W' is defined by
(M'B,w)=(B,Mw)  VBeV/ weW.

Let Vi, V2, ..., V) be subspaces of V such that
J
v=Yv, (12)

and let a;(-,-) be a nonsingular bilinear form on V}, i.e.,
A;j:Vi— VJ{ is invertible (13)

where
Apjwi)=aj(vjw;)  Vvj,w; €V

The operator Fj : V' — V; for 1 < j <J are defined recursively by

j-1
aj(FiB,v;)=(B.vj)— Y a(FB,v;)  Vv,eV;,BeV, (14)
k=1
and we define B: V' — V by
J
BB =) (F;p). (15)
j=1

The multiplicative Schwarz algorithm is then given by the iteration
Unew = Uold + B(Q — Autold), (16)

As in the case of the Gauss-Seidel method, we have two expressions for the error
propagation operator. The first obvious one is given by

U —tnew = (I —BA) (u — ugla), (17)

where [ is the identity operator on V, and the second one, which is responsible for
the name of the algorithm, can be derived as follows.
Let 7 : V — V; be defined by
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aj(Tiv,v;) =a(v,v;) VveV,v;eV,. (18)

Remark 1. Note that (18) implies that Ker7; is the orthogonal complement of V;
with respect to a(-, ). Therefore Ker T; = KerT; and the restrictions of 7; and T}
to V; are isomorphisms. In particular we have T;V =V; = Tj*V. It follows that the
pseudo-inverse Tj_1 (resp., (7}*)’1
onto V;.

) of Tj (resp., T;) with respect to a(-,-) maps V
It follows from (14) and (18) that
j-1
FB=Tj(A'B—Y FpB) =Tz, (19)
k=1
where

j—1 )
=A"'B- Y FB= ("B~ YL i)~ F-iB
k=1 k=1
=(I=Tj )z =U-Tp)-(I-T)A'B.  (20)

Combining (15), (16), (19) and (20), with B = a — Aueg, we find
J
U — Upew = U — Uold — Z szj
j=1

J
= (1= YL T -Tp1)- (1= T)) ) (u— ) @1
=1

={U-T)) - (I—T)(u—uoa)-

We are interested in formulas for || —BA|, = ||(I=T))--- (I—T1)||a, where || - |4
is the operator norm induced by a(-, -).

4 Additive Schwarz Theory

We need the following fundamental result from the additive Schwarz theory.

Lemmal. LetS;:V; — V and B; : V; — V]{ be linear operators for 1 < j < J,
and let Bj be SPD. Then the operator B = Zle SijflSlj : V! — V is SPD if and
only if V. = 25:1 S;Vj, in which case we have

J
(B lvy)= min Y (Bjv,v;) VveV. (22)
VZZ']’-ZIS/'V/'.]'ZI
vi€V;
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Proof. B is clearly symmetric semi-definite, and we have for any § € V’,

~

(B,BB) = Z (SB,B;'S5B) =0,

which holds if and only if Stj B=0for1< j<J,since B;l is also SPD. We conclude

that (3,BfB) = 0 if and only if

M\

(B,S;jvj)=0 Vv;jeV;, 1< j<J.
j=1

Therefore (§,Bf) = 0 implies = 0 if and only if V = ):§:1 S;Vi.
The identity (22) comes from the observations that

~

M\

(Bjwj,vj),

J
Y Sy = Z (B} 'S'B 1), v)) =
=1

j=1 j=1

where w; = B;lS’jB_lv €V;, and

J J
Y Swi= Y S;(B;'s:B ') (ZSB 1s0)B v =BB v =1,

J=1 J=1 J=1

Indeed it follows from (23) that
J J
Z Bjw;j,vj) if ZSjvj:v,
j=1 i—1

and in particular, because of (24),

(B hvv) =Y (Bjwj,w;).

™-

1

J

Subtracting (26) from (25) we find
J J
=Z<Bjo,Vj—Wj> if ZSjVjZV.
j=1 i=1

The orthogonality condition (27) implies

~

J

Jj= J=1 J=1

and hence

(23)

(24)

(25)

(26)

27

J J
(Bjvj,vj) = Z Bjwj,wj)+ Z(Bj(vj—wj)mj—wj} if ZSjvj:v,
1 J=1
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J J
Z<Bjo,Wj>= min Z<BJ‘VJ',V]‘>,
j=1 v:ijlsjij:l
VjEVj
which together with (26) implies (22).
5 A Fundamental Operator
We begin with the standard formula
17— BA|Z = [|(1 — BA)* (I — BA)|a, (28)

where (I — BA)* = I — B'A is the adjoint of I — BA with respect to the bilinear form
a(-,-). We can write

(I—BA)*(I—BA) = (I—B'A)(I—BA) =1— (B'+ B—B'AB)A.  (29)

As in the case of the Gauss-Seidel method, the operator B + B — B'AB will play
a fundamental role. The key to the additive analysis is to interpret this operator as
an additive Schwarz preconditioner. We begin with the following result.

Lemma 2. We have

(B.(B'+B-BAB)B) = ¥ [24,05.0))—al3)|  VBeV,  G0)

-

wherey; = F;p.
Proof. From (14) and (15), we have

J J J
(B.(B'+B—B'AB)p Z ~a Z YV
j=1 =1 j=1
J - J J
Z (aj ijyj Z yfayj ) nya y])7
=1 =1 =1 j=I1
which implies (30) by the symmetry of a(-, -).
We assume that
3(1)j€(072) such that a(Vj,Vj)S(Djaj(Vj,Vj) VVjEVj. @31
Let the operator B : V; — V; be defined by
(ijj,wj>:aj(vj,wj)+aj(wj,vj)—a(vj,wj) VVj,WjEVj. (32)

Clearly B; is symmetric and it is positive definite because of (31).



8 Susanne C. Brenner

Remark 2. Since we are in a finite dimensional setting, condition (31) is equivalent
to B; being SPD. It is also equivalent to

[I=Tjvlla<|vlle VveV and [(I-Tjvjlla <|vjlla Vv;€V;\{0}.
Note that we can write, by (18),

Bjvj,wi) =a(T; vj,w)+a(w;, (T, ) v)) —a(vj,w))

a((T}) (T} + T = Ty T)T; 'vjowy) = a(TT; vy T wy) - (33)

for all v;,w; € V;, where
Ty=T; +T;~T;T;. (34)

Remark 3. According to Remark 1, we have TJ-V C V;. The relation (33) implies that

a(Tjvj,vj) = (Bjvj,vj) > 0 for v; € V;\ {0}. Therefore the restriction of T; to V;
is an isomorphism and it follows from Remark 1 that Ker7; = KerT; = Ker T]* is
the orthogonal complement of V; with respect to a(-,-). Consequently the pseudo-
inverse T;l of T; with respect to a(-,-) maps V onto V;.

From Lemma 2 and (32) we have

(B,(B'"+B—B'AB)f ZJ: (B;F;B.F;B) = i(ﬁ,F}BFjﬁ) VBeV'. (35

Jj=1
It then follows from polarization that
J J ' J |
B'+B-B'AB=Y FiB;F;j=Y (F/B;)B;'(BjF;)=) S;B;'S}, (36)
j=1 j=1 =1
where the operator S; : V; — V is given by S; = F]B; = (B,F;)".

Remark 4. The identity (36) shows that the operator B + B’ — B'AB is indeed an
additive Schwarz preconditioner. Note that (12) and (14) imply 1 =---=F; =0
if and only if B =0, and hence B’ + B — B'AB is SPD by (35). Therefore the formula
(22) in Lemma 1 is valid.

An explicit formula for §; is provided by the following lemma.

Lemma 3. We have
Sj=—17)-- (=T )TT (37)
Proof. Letv; € V; be arbitrary. It follows from (19), (20) and (33) that
(S5B.vj) = ((B;F))B,vj) = a(TyT; 'F;B.T; 1))
=a(z), T;T; ') = (B, (I =T7") - (I =T} )T 'v)),

which implies (37).
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6 Formulas for ||/ — BA||,

It follows from (28), (29), the spectral theorem and the Rayleigh quotient formula
that

A
17 — BA|]2 = 1 — min (A, v) :
veV ((B'+B—B'AB)"lv,v)

which together with (36) and Lemma 1 (cf. Remark 4) implies

A
|7 —BAJI2 = 1 —min < i’v> (38)
ve
min Z<Bjo,Wj)
V:zj:l Sjo j:1
WjGVj
Remark 5. Note that we can rewrite (7) as

IT—BA|3 =1 - min viAY (39)

_ = 1—mi ,

A vER™ min w'Dw

v=(I+D~1U)-1w
and (38) is precisely the analog of (39).

Next we will replace the implicit decomposition for v that appears in (38) by an
explicit decomposition that will lead to an analog of (7). In the case of the Gauss-
Seidel method, it is equivalent to inverting the relation v = (I+D~'U)~'win (39) to
express w as (I+D~1U)v. This motivates the following construction of the explicit
decomposition through an “upper triangular” system.

Givenv; € V;for1 < j<J, we wantto find w; € V; for 1 < j < J such that

J J
Y Swi= Y v (40)
j=1 j=1
It is easy to check using (37) that the solution of (40) is given by
B J
T wi=vi+T; Y w  for 1<j<J. (41)
k=j+1

Combining (33), (38), (40) and (41), we have the following analog of (7):

a(v,v)

If = BA||f = 1—min (42)

J

J J
min Za(vj-JrTj* Z vkj“j*l(ijrTf* Z vk>>
V:Zle vjj=1 k=j+1 k=j+1
VJ'GVJ'

Remark 6. In the case where a j(-7 -)is SPD for 1 < j < J, the formula (42) becomes
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17— BAJ;
=1 —min ) (43)
vev . J J J
min Z(lj(\/j"rTj ) Vka(ZI—Tj)fl(V.i"‘T.i )y Vk))
=R

ViEV;

The application of the formula (43) to domain decomposition and multigrid can be
found in [5].

To derive the analog of (8), we again seek guidance from the analysis in Sec-
tion 2. The transition from (7) to (8) involves the difference of I+D~1U and DU,
which is a diagonal matrix. Therefore we look for operators Q; : V; — V; for
1 < j < J such that

J J J
Yoa(vi+1; Y w7 (+77 ¥ w))—alwy)
j=1 k=j+1 k=j+1

J J J
:Za("j+Qj"j+Tj* Z vk,Tj_l(VjJerVj+Tj* Z Vk>). (44)

j=1 k=j+1 k=j+1
It is straightforward to check that (44) is equivalent to
71 / 71 /
a(Qv;, Ty 'Qv)) +2a(v;+T7 ) vi, Ty 'Qyv)) = *CI(V./' +2 ) vk,vj),
k=j+1 k=j+1

which would follow from the relations
a(@vj+2v;, T Qjv)) = —a(vj,v)), (45)

a(Tj* i vk,TT]ijj) —a< i vk,vj). (46)

k=j+1 k=j+1

The relation (46) indicates that we should choose Tj_lQ ;= —Tj_1 and therefore
Q; should be given by

& -1 ~1 —1
0 =TTy = (1 + =TT = =T +1-T), @D
and then (45) is also satisfied because
a(Qvi+2v;, T 'Qjv;) = —a((I - T; T, ' + T )v;, T, 'v;)
= —a(v;, Ty ') +a(TiT; vy, T; ) = a(T) vy, T; ;)
= —a(vj,vj)-

In view of (47), we have
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J J J
Vit ONHT )3 e ‘TfolVf*Tf*kZ.v" =7 (,;Vk ~7i'v) @)
=j+ =j =j

Putting (42), (44) and (48) together we arrive at the following analog of (8):

11— BA|2 = 1 —min a(vv)
veV J _ J
a(v,v)+ min a(]}-*(ka—Tj_lvj>,Tj_1T/.*<ka—Tj_lv.,-))
=L v k=j k=j
v;€V;
1
=1- S S . (49)
14+ max min a(Tj‘(ka—Y}*IVJ,TJ?'T;(ZW—T;'v,»))
veV v=riv; k=j k=j
[vlla=1vj€Y;

7 Connection to the Xu-Zikatanov Theory

The theory in [17] was developed for the product operator (I —Tj)--- (I —T;) on
an inner product space (V,a(-,-)), where T; : V. — V; and T; : V; — V; is an
isomorphism.

A key assumption in [17] is

T2 < wa(Tv,v) YveV (50)
for some @ € (0,2).
Lemma 4. Under assumption (50), we have
Tiv=0&a(v,v;)=0 Vv; €V,

Proof. If a(vj,v) =0forallv; € V;, then Tjv = 0 by (50). Therefore, by a dimension
argument, the kernel of 7} is the orthogonal complement of V; with respect to a(-, -).

In view of Lemma 4, we can define a(-,-) by
aj(Tiv,vj) =a(v,v;)) VveV,v; eV,
Then a;(-,-) is nonsingular since
aj(wj,vj))=0 Yw;eV; = a(vv))=0 VveV =vy;=0.

On one hand we have a(T;v,Tjv) = ||Tjv||2, and on the other hand we have
a(Tjv,v) = a(v,Tjv) = a;(T;v,Tjv). Hence (50) is equivalent to (31) since V; = T}V

We conclude that the framework in [17] is identical to the framework in Section 3
and Section 5, and ||(/ —T)--- (I — T1)|| is given by the formulas (42) and (49). In
particular, the formula (49) is identical to the identity (1.1) in [17]. We note that
another derivation of this identity can be found in [7].
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Abstract We present a scalable solver for the three-dimensional cardiac electro-
mechanical coupling (EMC) model, which represents, currently, the most com-
plete mathematical description of the interplay between the electrical and mechan-
ical phenomena occurring during a heartbeat. The most computational demanding
parts of the EMC model are: the electrical current flow model of the cardiac tissue,
called Bidomain model, consisting of two non-linear partial differential equations
of reaction-diffusion type; the quasi-static finite elasticity model for the deformation
of the cardiac tissue. Our finite element parallel solver is based on: Block Jacobi
and Multilevel Additive Schwarz preconditioners for the solution of the linear sys-
tems deriving from the discretization of the Bidomain equations; Newton-Krylov-
Algebraic-Multigrid or Newton-Krylov-BDDC algorithms for the solution of the
non-linear algebraic system deriving from the discretization of the finite elasticity
equations. Three-dimensional numerical test on two linux clusters show the effec-
tiveness and scalability of the EMC solver in simulating both physiological and
pathological cardiac dynamics.
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1 Introduction

In the last twenty years, computer modeling has become an effective tool to push
forward the understanding of the fundamental mechanisms underlying the origin
of life-threatening arrhythmias and contractile disorders in the human heart and to
provide theoretical support to cardiologists in developing more successful pharma-
cological and surgical treatments for these pathologies.

The spread of the electrical impulse in the cardiac muscle and the subsequent
contraction-relaxation process are quantitatively described by the cardiac electro-
mechanical coupling (EMC) model, which consists of the following four compo-
nents: the quasi-static finite elasticity model of the deforming cardiac tissue, de-
rived from a strain energy function which characterizes the anisotropic mechanical
properties of the myocardium; the active tension model, consisting of a system of
non-linear ordinary differential equations (ODEs), describing the intracellular cal-
cium dynamics and cross bridges binding; the electrical current flow model of the
cardiac tissue, called Bidomain model, which is a degenerate parabolic system of
two non-linear partial differential equations of reaction-diffusion type, describing
the evolution in space and time of the intra- and extracellular electric potentials; the
membrane model of the cardiac myocyte, i.e. a stiff system of ODEs, describing the
flow of the ionic currents through the cellular membrane.

This complex non-linear model poses great theoretical and numerical challenges.
At the numerical level, the approximation and simulation of the cardiac EMC model
is a very demanding and expensive task, because of the very different space and
time scales associated with the electrical and mechanical models, as well as their
non-linear and multiphysics interactions.

In this paper, we present the finite element solver that we have developed to sim-
ulate the cardiac electro-mechanical activity on parallel computational platforms.
The solver is based on a Multilevel Additive Schwarz preconditioner for the linear
system arising from the discretization of the Bidomain model and on a Newton-
Krylov-BDDC method for the non-linear system arising from the discretization of
finite elasticity. Three-dimensional numerical tests show the effectiveness and scala-
bility of the solver on Linux clusters, in both normal physiological and pathological
situations.

2 Cardiac electro-mechanical models

a) Mechanical model of cardiac tissue. The deformation of the cardiac tissue is
described by the equations of three-dimensional non-linear elasticity

Div(FS) =0, XeQ, (1)

where X = (X|,X2,X3)? are the material coordinates of the undeformed cardiac
domain Q (x = (x; ,Xx2,x3)T are the spatial coordinates of the deformed cardiac do-
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main Q(¢) at time ¢), and F(X,7) = g—; is the deformation gradient. The second
Piola-Kirchoff stress tensor S = $7%° 48"/ 4§ is assumed to be the sum of pas-
sive, volumetric and active components. The passive and volumetric components

are defined as

pasvol 1 aWpas,w)l aWpas,vol o
Sij —2< JE, + 3L, ) i,j=1,2,3, 2)
where E = %(C —1I) and C = FF are the Green-Lagrange and Cauchy strain ten-
sors, WP is an exponential strain energy function (derived from [7]) modeling the
myocardium as an orthotropic (or transversely isotropic) hyperelastic material, and
Wl = K (J — 1)* is a volume change penalization term accounting for the nearly in-
compressibility of the myocardium, with K a positive bulk modulus and J = det (F).

b) Mechanical model of active tension. The active component of the stress
tensor is given by S = Ta;%%aa’, where a; is the fiber direction and T, =
| 1

T, (Cai,l, %) is the fiber active tension, obtained by solving a biochemical dif-
ferential system depending on intracellular calcium concentrations, the myofiber
stretch A = | /al Ca; and stretch-rate % (see [11]).

c) Bioelectrical model of cardiac tissue: the Bidomain model. The evolution
of the cardiac extracellular and transmembrane potentials u,,v, gating variable w,
and ionic concentrations ¢, is given by the Bidomain model. Its parabolic-elliptic
formulation on the deformed configuration 2 (¢) reads:

{ Cm% — le(D,V(V + I/le)) + ii()n(va w,C, )L) = iapp (3)
—div(D;Vv) —div((D; + D.)Vu,) = 0.

In the Lagrangian framework, after the pull-back on the reference configuration
Q x (0,T), the Bidomain system becomes

av . ) ~ o ~
cmd (a; —FTGradv-V> —Div(J F'DF T Grad(v+ia)) +J ijon (¥, W, €, 1)

—Div(J F~'D;F~T Gradv) — Div(J F~'(D; + D,)F~T Gradi,) = 0,
4)

where ¢,, and i;,, are the membrane capacitance and ionic current per unit volume,

d
respectively, and V = au is the rate of deformation; see [4] for the detailed deriva-

tion. These two partial differential equations (PDEs) are coupled through the reac-
tion term i;,, with the ODE system of the membrane model, given in Q(z) x (0,7T)
by

ow de
7—RW(V,W>:O7 E_

This system is completed by prescribing initial conditions, insulating boundary con-
ditions, and the applied current i,,,. Since the extracellular potential i, is defined
up to a time dependent constant in space, we fix it by imposing that i, has zero aver-

R (v,w,c) =0. (5)

=J lapp
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age on the cardiac domain; see [4] for further details. The orthotropic conductivity
tensors in the deformed configuration are given by

Dj. =01+ (0 -0, )a®@a,+ (0, —0,°)a, ®a,,

where Gli “ 0'; “ or* are the conductivity coefficients in the intra- and extracellular
media measured along and across the fiber direction a;, a,, a,,.

d) Ionic membrane model and stretch-activated channel current. The ionic
current in the Bidomain model (3) is ijo, = Xlion, Where X is the membrane sur-
face to volume ratio and Ly, (v, W, ¢, A) = I (v, W, ¢) + Lo (v, €, A ) is the sum of the
ionic term I, (v, w,¢) given by the ten Tusscher model (TP06) consisting of 17 or-
dinary differential equations, [20, 21], available from the cellML depository (mod-
els.cellml.org/cellml), and a stretch-activated current I,.. In this work, we adopt the
model of Iy, proposed in [13] as the sum of non-selective and selective currents
Lsae = Iis + Ix,. We will consider two calibrations where the Iy, equilibrium poten-
tial (denoted in the following by Vi, i.e. the value such that Iy, (Vsae) = 0) is either
Viae = —60 mV or Vi, = —19 mV. We recall that, for v > V., the stretch-activated
current Iy, is positive, thus it has a hyperpolarizing effect, while, for v < Vi, Lsc

is negative, resulting in a depolarizing effect. For further details, we refer to [5].

3 Numerical methods

Space discretization. We discretize the cardiac domain with a hexahedral struc-
tured grid 7;,, for the mechanical model (1) and 7}, for the electrical Bidomain
model (4), where T, is a refinement of 7}, . We then discretize all scalar and vector
fields of both mechanical and electrical models by isoparametric Q; finite elements
in space.
Time discretization. The time discretization is performed by a semi-implicit
splitting method, where the electrical and mechanical time steps can be different.
At the n—th time step,

a) given V', w", ", solve the ODE system of the membrane model with a
first-order IMEX method to compute the new w1, ¢"*1,
b) given the calcium concentration Ca?“, which is included in the concentration
variables "1, solve the mechanical problems (1) and the active tension differential
system to compute the new deformed coordinates x"*!, providing the new defor-
mation gradient tensor F,, 1.

¢) given w1, "1 F, . and J, | = det(F,. ), solve the Bidomain system (4)
with a first order IMEX method and compute the new electric potentials v'+!, y/+!
with an operator splitting method, where the parabolic and elliptic PDEs are
decoupled; see [4] for further details.



Scalable cardiac electro-mechanical solvers and reentry dynamics 5

4 Parallel solver

4.1 Computational kernels

Due to the discretization strategies described above, the main computational kernels
of our solver at each time step are the following:

1- solve the non-linear system deriving from the discretization of the mechanical
problem (1) using an inexact Newton method. At each Newton step, a non-
symmetric Jacobian system Kx = f is solved inexactly by the GMRES iterative
method preconditioned by a BDDC preconditioner, described in the next section.

2- solve the two linear systems deriving from the discretization of the parabolic
and elliptic equations of the Bidomain model, by using the Conjugate Gradient
method preconditioned by the Block Jacobi and Multilevel Additive Schwarz
preconditioners, respectively, developed in [14].

4.2 Mechanical solver

Schur Complement System. To keep the notation simple, in the remainder of this
section and the next, we denote the reference domain by Q instead of Q. Let us
consider a decomposition of £ into N nonoverlapping subdomains €2; of diameter
H; (see e.g. [22, Ch. 4]) Q = Uﬁvzl Q;, and set H = max H;. As in classical itera-
tive substructuring, we reduce the problem to the interface I" := ( AR 89,~> \dQ

by eliminating the interior degrees of freedom associated to basis functions with
support in the interior of each subdomain, hence obtaining the Schur complement
system

Srxr = gr, (6)

where S = Krr — KFIKI}IKIF and gr = fr — KnKI;If] are obtained from the
original discrete problem Kx = f by reordering the finite element basis functions in
interior (subscript /) and interface (subscript I") basis functions.

BDDC preconditioner. The Schur complement system (6) is solved iteratively by
the GMRES method using a BDDC preconditioner M EDIDC

MEDIDCSF Ar :MI;DIDCgF . )

Once the interface solution xr is computed, the internal values x; can be recovered
by solving local problems on each subdomain £2;.

BDDC preconditioners represent an evolution of balancing Neumann-Neumann
methods where all local and coarse problems are treated additively due to a choice of
so-called primal continuity constraints across the interface of the subdomains. These
primal constraints can be point constraints and/or averages or moments over edges
or faces of the subdomains. BDDC preconditioners were introduced in [6] and first
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SIM2: TRANSMEMBRANE POTENTIAL SNAPSHOTS

t=110 ms t=235 ms =440 ms t=1270 ms

83108+0

SIM3: TRANSMEMBRANE POTENTIAL SNAPSHOTS
t=110 ms t=235 ms t=440 ms t=1270 ms

Fig. 1 Test 1: Snapshots of transmembrane potentials computed from SIM2 (ventricular tachycar-
dia) and SIM3 (ventricular fibrillation). The units in the colorbars are given in mV'.

analyzed in [12]. We remark that BDDC is closely related to FETI-DP algorithms,
see, e.g. [10, 9], defined with the same set of primal constraints as BDDC, since
it is known that in such a case the BDDC and FETI-DP operators have the same
eigenvalues with the exception of zeros and ones. For the construction of BDDC
preconditioners applied to the non-linear elasticity system constituting the cardiac
electromechanical coupling problem, we refer to [16].

5 Numerical Results

In this section, we present the results of parallel numerical experiments performed
on the Linux cluster Marconi (http://www.hpc.cineca.it/hardware/marconi) of the
Cineca Consortium (www.cineca.it). Our code is built on top of the FORTRAN90
wrappers of the open source PETSc library [1]. In the mechanical solver, at each
Newton iteration, the non-symmetric Jacobian system is solved iteratively by GM-
RES preconditioned by the BoomerAMG or the BDDC preconditioner, with zero
initial guess and stopping criterion a 103 reduction of the relative residual /,-norm.
The BDDC method is available as a preconditioner in PETSc and it has been con-
tributed to the library by S. Zampini, see [25].
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Fig. 2 S1 beat of physiological test SIM1 over 500 msec.: time plots at an epicardial point of the
indicated electrical (left) and mechanical (right) quantities

5.1 Test 1: comparison of solver performance on normal and
pathological dynamics

We consider an idealized left ventricle, represented by a truncated ellipsoid dis-
cretized by an electrical grid of 384 x 192 x 48 Q! finite elements, yielding a total
amount of about 3.6 - 10% nodes, thus the degrees of freedom (dofs) of the parabolic
and elliptic Bidomain linear systems are 3.6 - 10°. The mechanical mesh is eight
times coarser than the electrical one, i.e. 48 x 24 X 6 Q1 finite elements, with a to-
tal amount of 8400 nodes, thus the dofs of the finite elasticy non-linear system are
25200. The electrical time step is 0.05 ms, while the mechanical time step is 0.5 ms.
The simulations are run on 24 processors. The tissue is assumed to be axisymmetric.
The mechanical non-linear system is solved by the Newton-Krylov-AMG method.

We first compare the performance of the electro-mechanical solver in three dif-
ferent situations:

e anormal physiological heartbeat (SIM1) without reentry;
e a ventricular tachycardia dynamics (SIM2), with V,,. = —19 mV;
e a ventricular fibrillation dynamics (SIM3), with Vy,. = —60 mV'.
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Fig. 3 Periodic test SIM2 with slope = 1.8, Vi, = —19 mV over 2000 msec.: time plots at an
epicardial point of the indicated electrical (left) and mechanical (right) quantities

In SIM1, the external stimulus is applied at the endocardial apical region, the
interior bottom part of the truncated ellipsoid, and the total simulation run is 500 ms.
The activation wavefront propagates starting from the endocardial apical regions,
where the stimulus is delivered, towards the whole ventricle (not shown, but similar
to the propagation displayed in Fig. 6).

In SIM2 and SIM3, we apply first an S1 stimulus as in SIM1. 280 ms after the
S1 stimulus is delivered, we apply a premature S2 cross-gradient stimulation current
from the base to the apex and across the wall thickness, covering about a third of
ventricular volume, to induce a ventricular reentry consisting of a pair of counter-
rotating scroll waves. We run the simulation for 2000 ms after the S2 delivery. The
SAC parameter V. is set to —19 mV and —60 mV is SIM2 and SIM3, respectively.

In SIM2, the two scroll waves generated by the S2 stimulus continue to rotate
without breaking, leading to a stable periodic ventricular tachycardia pattern, see
Fig. 1.

In SIM3 instead, after the first rotation, the two scroll waves break up into sev-
eral smaller scroll waves, generating irregular transmembrane potential distributions
characterized by high electrical turbulence, often associated with ventricular fibril-
lation, as shown in the snapshots of Fig. 1. Thus, the low SAC reversal potential
(Vsae = —60 mV) seems to induce deterioration of the stability of scroll waves, pro-
moting the onset of ventricular fibrillation.

Figures 2, 3, 4 report the time evolution of the mathematical parameters of the
electro-mechanical solver (CG iterations, condition numbers, Newton iterations,
GMRES iterations) and the CPU times needed to solve the parabolic, elliptic and
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Fig. 4 Turbulent test SIM3 with slope = 1.8, Vi, = —60 mV over 2000 msec.: time plots at an
epicardial point of the indicated electrical (left) and mechanical (right) quantities

proc|itpay timepay |ite; timeey; In=v II1=VE
nit lit timegyeg|nit lit timeg,es

32 | 3 2.24e-1|20 9.56e-1| 4 39 1290 |4 38 13.23
64 | 3 1.24e-1{20 537e-1|{4 48 5.03 (4 47 536
128 | 3 7.71e-2|20 3.17e-1| 4 48 3.67 |4 47 3.50

256 | 3 3.78e-2(20 2.40e-1|4 45 255 |4 44 288

Table 1 Strong scaling test on a whole heartbeat simulation. if,,: CG iteration to solve the
parabolic linear system (average per time step). time,: CPU time to solve the parabolic linear
system (average per time step). it,;;: CG iteration to solve the elliptic linear system (average per
time step). time,;;: CPU time to solve the elliptic linear system (average per time step). nit: New-
ton iteration to solve the mechanical system (average per time step). /it: GMRES iteration to solve
the Jacobian system (average per Newton iteration). timeg,.s: CPU time to solve the mechanical
system (average per time step). All CPU times are given in seconds.

non-linear systems (TIME PARAB., TIME ELL., TIME SNES, respectively) ob-
tained from the SIM1, SIM2, SIM3, respectively. The results show that all the
components of the solver are quite robust with respect to the different simulation
dynamics considered, physiological and pathological. The condition number of the
elliptic solver increases slightly when the contraction is more pronounced, but it
always remains bounded betweem 10 and 15.
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Fig. 5 Strong scaling test on a whole heartbeat simulation. Time evolution of electrical and me-
chanical solvers parameters.

5.2 Test 2: strong scaling on a normal heartbeat

We then perform a strong scaling test on a whole heartbeat lasting 400 ms. The
three-dimensional cardiac domain considered is a truncated ellipsoid modeling the
left ventricle, discretized by an electrical mesh of 384 - 192 .48 Q; finite elements,
yielding the same Bidomain dofs as in the previous test, about 3.6- 10°. The mechan-
ical mesh size is now four times coarser than the electrical one in each direction,
thus the mechanical elements are 96-48 - 12, resulting in 183456 displacement dofs.
The number of subdomains (processors) increases from 32 to 256 whereas the num-
ber of degrees of freedom per subdomain is reduced as the number of subdomains
increases. The tissue is assumed to be orthotropic. The mechanical non-linear sys-
tem is solved by the Newton-Krylov-BDDC method. We choose as BDDC primal
constraints vertices (I = V) and vertices + edges (II = VE). To start the electrical
excitation, the external stimulus is applied at the endocardial apical region, in four
points modeling an idealized Purkinje network.

Fig. 6 reports selected snapshots of transmembrane and extracellular potentials
on the deforming domain during the entire heartbeat. The results reported in Table 1
(averages) and Fig. 5 (time evolution) show a good scalability of both the electrical
and mechanical components of the parallel solver, with linear and non-linear itera-
tions remaining about constant, while the CPU times decrease when the number of
processors increases.
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Fig. 6 Snapshots of transmembrane and extracellular potentials during a whole heartbeat. The
units in the colorbars are given in mV.




On overlapping domain decomposition
methods for high-contrast multiscale
problems

Juan Galvis!, Eric Chung?, Yalchin Efendiev?, and Wing Tat Leung?

1 Summary

We review some important ideas in the design and analysis of robust overlap-
ping domain decomposition algorithms for high-contrast multiscale problems.
In recent years, there have been many contributions to the application of dif-
ferent domain decomposition methodologies to solve high-contrast multiscale
problems. We mention two- and multi-levels methods, additive and additive
average methods, iterative substructuring and non-overlapping methods and
many others. See [11]. Due to page limitation, we focus only on two-levels
overlapping methods developed by some of the authors that use a coarse-grid
for the construction of the second level. We also propose a domain decompo-
sition method with better performance in terms of the number of iterations.
The main novelty of our approaches is the construction of coarse spaces,
which are computed using spectral information of local bilinear forms. We
present several approaches to incorporate the spectral information into the
coarse problem in order to obtain minimal (locally constructed) coarse space
dimension. We show that using these coarse spaces, we can obtain a domain
decomposition preconditioner with the condition number independent of con-
trast and small scales. To minimize further the number of iterations until
convergence, we use this minimal dimensional coarse spaces in a construction
combining them with large overlap local problems that take advantage of the
possibility of localizing global fields orthogonal to the coarse space. We ob-
tain a condition number close to 1 for the new method. We discuss possible
drawbacks and further extensions.

1Departamento de Mateméticas, Universidad Nacional de Colombia, Bogotd, Colombia.
2Department of Mathematics, Texas A&M University, College Station, TX 77843-3368,
USA. 3Department of Mathematics, The Chinese University of Hong Kong, Hong Kong
SAR.
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2 High-contrast problems. Introduction

The methods and algorithms, discussed in the paper, can be applied to various
PDEs, even though we will focus on Darcy flow equations. Given D C R?,
f:D—=R and g: 0D — R, find u: D — R such that

0 ou
o (s, =

with a suitable boundary condition, for instance u = 0 on dD. The coefficient
kij(x) = k(x)d;; represents the permeability of the porous media D. We
focus on two-levels overlapping domain decomposition and use local spectral
information in constructing “minimal” dimensional coarse spaces (MDCS)
within this setting. After some review on constructing MDCS and their use in
overlapping domain decomposition preconditioners, we present an approach,
which uses MDCS to minimize the condition number to a condition number
closer to 1. This approach requires a large overlap (when comparted to coarse-
grid size) and, thus, is more efficient for small size coarse grids. We present
the numerical results and state our main theoretical result. We assume that
there exists Kmin and Kmax With 0 < £min < K(2) < Kmax for all z € D. The
coefficient x has a multiscale structure (significant local variations of k
occur across D at different scales). We also assume that the coefficient & is
a high-contrast coefficient (the constrast is 7 = Kmax/Kmin). We assume that
7 is large compared to the coarse-grid size.

It is well known that performance of numerical methods for high-contrast
multiscale problems depends on 7 and local variations of x across D. For
classical finite element methods, the condition to obtain good approximation
results is that the finite element mesh has to be fine enough to resolve the
variations of the coefficient x. Under these conditions, finite element approx-
imation leads to the solution of very large (sparse) ill-conditioned problems
(with the condition number scaling with h=2 and 7). Therefore, the perfor-
mance of solvers depends on 7 and local variations of k across D. This was
observed in several works, e.g., [8, 10, 1]1.

Let 7" be a triangulation of the domain D, where h is the size of typical

element. We consider only the case of discretization by the classical finite
element method V = P;(T") of piecewise (bi)linear functions. Other dis-
cretizations can also be considered. The application of the finite element dis-
cretization leads to the solution of a very large ill-conditioned system Az = b,
where A is roughly of size h=2 and the condition number of A scales with 7
and h~2. In general, the main goal is to obtain an efficient good approxima-
tion of solution u. The two main solution strategies are:
1. Choose h sufficiently small and implement an iterative method. It
is important to implement a preconditioner M ! to solve M ~'Au = M ~1b.
Then, it is important to have the condition number of M 1A to be small
and bounded independently of physical parameters, e.g., n and the multi-
scale structure of k.

1 Due to the page limitation, only a few references are cited throughout.
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2. Solve a smaller dimensional linear system (7 with H > h) so that
computations of solutions can be done efficiently?. This usually involves the
construction of a downscaling operator Ry (from the coarse-scale to fine-scale
vo — v) and an upscaling operator (from fine-scale to coarse-scale, v — vg)
(or similar operators). Using these operators, the linear system Au = b be-
comes a coarse linear system Agug = by so that Rpug or functionals of it
can be computed. The main goal of this approach it to obtain a sub-grid
capturing such that ||u — Rouol| is small.

The rest of the paper will focus on the design of overlapping domain de-
composition methods by constructing appropriate coarse spaces. First, we will
review existing results, which construct minimal dimensional coarse spaces,
such that the condition number of resulting preconditioner is independent of
1. These coarse spaces use local spectral problems to extract the information,
which cannot be localized. This information is related to high-conductivity
channels, which connect coarse-grid boundaries and it is important for the
performance of domain decomposition preconditioners and multiscale sim-
ulations. Next, using these and oversampling ideas, we present a “hybrid”
domain decomposition approach with a condition number close to 1 by ap-
propriately selecting the oversampling size (i.e., overlapping size). We state
our main result, discuss some limitations and show a numerical example. We
compare the results to some existing contrast-independent preconditioners.

3 Classical overlapping methods. Brief review

We start with a non-overlapping decomposition {D}N S of the domain D
and obtain an overlapping decomposition {D; } 1 by adding a layer of width
0 around each non-overlapping subdomain. Let A be the Dirichlet matrix
corresponding to the overlapping subdomain D’ The one level method solves
M{'A = M;'b with M;! = ZNS R;(A;)"'RT and the operators R}
j=1,...,Ng, being the I‘GStI‘lCthH to overlappmg subdomain D; operator
and with the R; being the extension by zero (outside D;) operator. We
have the bound Cond(M; *A) < C (14 1/6H). For high-contrast multiscale
problems, it is known that C =< 7.

Next, we introduce a coarse space, that is, a subspace Vy C V of small di-
mension (when compared to the fine-grid finite element space V). We consider
Ay as the matrix form of the discretization of the equation related to sub-
space Vj. For simplicity of the presentation, let Ay be the Galerkin projection
of A on the subspace Vy. That is A9 = RgARY, where Ry is a downscaling
operator that converts coarse-space coordinates into fine-grid space coordi-
nates. The two-levels preconditioner uses the coarse space and it is defined by

= RoAy 'R +Y°N% R;j(A;)7'RT = RoAg ' RY +M; ' It is known that
Cond(M~tA) <n(1+ H/S). The classwal two-levels method is robust with
respect to the number of subdomains but it is not robust with respect to 7.

2 The coarse mesh does not necessarily resolve all the variations of x.
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The condition number estimates use a Poincaré inequality and small overlap
trick; [13]. Without the small overlap trick Cond(M ~*A) < n(1+ H?/§?).
There were several works addressing the performance of classical domain
decomposition algorithms for high-contrast problems. Many of these works
considered simplified multiscale structures?, see e.g., [13] for some works by O.
Widlund and his collaborators. We also mention the works by Sarkis and his
collaborators, where they introduce the assumption of quasi-monotonicity [4].
Sarkis also introduced the idea of using “extra” or additional basis functions
as well as techniques that construct the coarse spaces using the overlapping
decomposition (and not related to a coarse mesh); [12]. Scheichl and Graham
[10] and Hou and Aarnes [1], started a systematic study of the performance of
classical overlaping domain decomposition methods for high-contrast prob-
lems. In their works, they used coarse spaces constructed using a coarse grid
and special basis functions from the family of multiscale finite element meth-
ods. These authors designed two-levels domain decomposition methods that
were robust (with respect to n) for special multiscale structures. None of the
results available in the literature (before the method in papers [8, 9] was in-
troduced) were robust for a coeflicient not-aligned with the construction of
the coarse space (i.e., not aligned either with the non-overlapping decompo-
sion or the coarse mesh if any), i.e., the condition number of the resulting
preconditioner is independent of 1 for general multiscale coefficients.

4 Stable decomposition and eigenvalue problem. Review
A main tool in obtaining condition number bounds is the construction of a
stable decomposition of a global field. That is, if for all v € V = P}(D,T")
there exists a decomposition v = vy + Z;V:sl v; with vg € Vp and v; € V; =
P3(D;,T"),j=1,...,N, and

Ng
/ I{|v1}0|2+2/ K| Vo; |2 SCg/ K|Vol|?
D =/ D

for Cyp > 0. Then, cond(M;'A) < ¢(T", TH)C2. Existence of a suitable
coarse interpolation Iy : V' — V; = span{®} implies the stable decomposition
above. Usually such stable decomposition is constructed as follows.

For the coarse part of the stable decomposition, we introduce a partition
of unity {x;} subordinated to the coarse mesh (supp x; C w; where w; is the
coarse-block neighborhood of the coarse-node ;). We begin by restricting
the global field v to w;. For each coarse node neighborhood w;, we identify
local field that will contribute to the coarse space I;"v so that the coarse
space will be defined as Vo = Span{x;I; v}. In classical methods Ijv is the
average of v in w;. Later we present some more general examples for ;. We

3 These works usually assume some alignment between the coefficient heterogeneities and
the initial non-overlapping decomposition.
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assemble a coarse field as vy = Igv = Zf\fl Xi(Iy v). Note that in each block
v—vo =), cx Xi(v—Igv).

For the local parts of the stable decomposition, we introduce a partition
of unity {&;} subordinated to the non-overlapping decomposition (supp &; C
D?%). The local part of the stable decomposition is defined by v; = &;(v — o).
For instance, to bound the energy of v;, we have in each coarse-block K,

/K Al Vo, =< /K HIVE; (Z xi<v—15”v>> 2

z, €K

<Z/ K(Ex)? IV (v = I§0) ]2 + Z / KV (&x)|? v — I§v]?

i€ K z,eK

Adding up over K, we obtain,

/ A0 2 < Z/ R(E0)? 9 (0 — 90) 2

IED

DO NEL TR

T, EW;

and we would like to bound the last term by C’fD; k| Vo2

For simplicity of our presentation, we consider the case when the coarse
elements coincide with the non-overlapping decomposition subdomains. That
is, D} = wj. In this case, we can replace { by x and replace V(x?) by Vy so
that we need to bound }°, fwj K|V x| lv = I§ v|?
as coarse-grid based.

. We refer to this design

Remark 1 (General case and overlapping decomposition based design). Sim-
ilar analysis holds in the case when there is no coarse-grid and the coarse
space is spanned by a partition of unity {£;}. We can replace x by ¢ and
V(€%) by VE. In general these two partitions are not related (see Sec. 4.1).

We now review the three main arguments to complete the required bound:
1) A Poincaré inequality. 2) L estimates. 3) Eigenvalue problem.

1. A Poincaré inequality: Classical analysis uses a Poincaré inequality
to obtain the required bound above. That is, the inequality % fw (v—1)% <
C [, IVu|* to obtain Zmiew]‘ fwj &IVxi[2 o = I§|* < = fwi klv — I§v|* <
wai k|Vv|?. In this case, I§*v is the average of v on the subdomain. For
the case of high-contrast coefficients, C' depends on 7, in general. For quasi-
monotone coefficient it can be obtained that C' is independent of the contrast
[4]. We also mention [8] for the case locally connected high-contrast
region. In this case I v is a weighted average. From the argument given in
[8], it was clear that when the high-contrast regions break across the domain,
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defining only one average was not enough to obtain contrast independent
constant in the Poincaré inequality.
2. L estimates: Another idea is to use an L°° estimate of the form

S [ Wl TP = 3 IVl [ o= Tl
w;

;€K z,EK Wi

The idea in [10, 1] was then to construct a partition of unity such that
[15|Vxi|?||s is bounded independently of the contrast and then to use clas-
sical Poincaré inequality estimates. Instead of minimizing the L°°, one can
intuitively try to minimize [, [Vx;|?. This works well when the multiscale
structure of the coefficient is confined within the coarse blocks. For instance,
for a coefficient and coarse-grid as depicted in Figure 1 (left picture), we
have that a two-level domain decomposition method can be proven to be
robust with respect the value of the coefficient inside the inclusions. In fact,
the coarse space spanned by classical multiscale basis functions with linear
boundary conditions (—div(kVy;) = 0 in K and linear on each edge of 0K)
is sufficient and the above proof works. Now consider the coefficient in Figure
1 (center picture). For such cases, the boundary condition of the basis func-
tions is important. In these cases, basis functions can be constructed such
that the above argument can be carried on. Here, we can use multiscale basis
functions with oscillatory boundary condition in its construction?.

Fig. 1 Examples o multiscale coefficients with interior high-contrast inclusions (left),
boundary inclusions (center) and long channels(right).

For the coefficient in Figure 1, right figure, the argument above using L*°
cannot be carried out unless we can work with larger support basis functions
(as large as to include the high-contrast channels of the coefficient). If the
support of the coarse basis function does not include the high-contrast region,
then ||k|Vx;|?||oo increases with the contrast leading to non-robust two-level
domain decomposition methods.

4 We can include constructions of boundary conditions using 1D solution of the problem
along the edges. Other choices include basis functions constructed using oversampling
regions, energy minimizing partition of unity (global), constructions using limited global
information (global), etc.
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2 <

3. Eigenvalue problem. We can write Z / K|V v — I§iv

TjEw;

1 v
ﬁ/ K|(v — Igv)? < C/ #|Vv|?, where we need to justify the last in-
Wi Wi
equality with constant independent of the contrast. The idea is then to con-

fwi k|Vol?

Juo, HI0P
quotient is related to an eigenvalue problem and we can define I5"v to be
the projection on low modes of this quotient on w;. The associated eigen-
problem is given by —div(k(x)Vy) = Ak(2z)y; in w; with homogeneous
Neumann boundary condition for floating subdomains and a mixed homoge-
neous Neumann-Dirichlet condition for subdomains that touch the bound-
ary. It turns out that the low part of the spectrum can be written as
Al < X < <A < Apy1 < . where Ay, ..., A\ are small, asymptoti-
cally vanishing eigenvalues and Ay, can be bounded below independently of
the contrast. After identifying the local field Ij*v, we then define the coarse
space as Vj = Span{[hxiw;”} = Span{®;}.

Eigenvalue problem with a multiscale partition of unity. Instead of
the argument presented earlier, we can include the gradient of the partition
of unity in the bounds (somehow similar to the ideas of L* bounds). We
then need the following chain of inequalities,

1 ~ v
/ Z kIVx; 2| v — I = ﬁ/ Rlv — Ig)? j/ K|Vou|?. Here

g TjEw; Wi

sider the Rayleigh quotient, Q(v) := with v € P(w;). This

= H %k
. . . Jo, K1V 1
we have to consider Rayleigh quotient Q,,s(v) := W, v € PYw;) and

define I5*v as projection on low modes. Additional modes “complement” the
initial space spanned by the partition of unity used so that the resulting
coarse space leads to robust methods with minimal dimension coarse spaces;
[9].

If we consider the two-level method with the (multiscale) spectral coarse
space presented before, then

cond(M~1A) < C(1+ (H/6)?), (1)

where C' is independent of the contrast if enough eigenfunctions in each node
neighborhood are selected for the construction of the coarse spaces. The con-
stant C' and the resulting coarse-space dimension depend on the partition of
unity (initial coarse-grid representation) used.
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4.1 Abstract problem eigenvalue problems
We consider an abstract variational problem, where the global bilinear
form is obtained by assembling local bilinear forms. That is a(u,v) =
>k ok (Rxu, Rgv), where ag(u,v) is a bilinear form acting on functions
with supports being the coarse block K. Define the subdomain bilinear form
aw, (u,v) = Y g, ar (u,v). We consider the abstract problem

a(u,v) = F(v) forallveV.
We introduce {x;}, a partition of unity subordinated to coarse-mesh blocks
and {¢;} a partition of unity subordinated to overlapping decomposition (not
necessarily related in this subsection). We also define the “Mass” bilinear
form (or energy of cut-off) m,, and the Rayleigh quotient Q45 by

a, (V,V)
My, (U, V)

My, (’U,’U) = Z a(finvaginv) and Qabs(v) =

JEwW;

For the Darcy problem, we have my, (v,v) = > ;.. fwi K| V(&xv)|* =
fwi k|v[?. The same analysis can be done by replacing the partition of unity
functions by partition of degree of freedom (PDoF). Let {x,;} be PDoF sub-
ordianted to coarse mesh neighborhood and {£;} be PDoF subordianted to
overlapping decomposition. We define the cut-off bilinear form and quotient,

ay, (V,v)
My, (v, V)

my, (’U,’U) = Z a(gin’U,gin’U) and Qabs2(v) =

JEwW;

The previous construction alows applying the same design recursively and
therefore to use the same ideas in a multilevel method. See [6, 7].

4.2 Generalized Multiscale Finite Element Method
(GMsFEM) eigenvalue problem

We can consider the Rayleigh quotients presented before only in a suit-
able subspace that allows a good approximation of low modes. We call
these subspace the snapshot spaces. Denote by W, the snapshot space
corresponding t(() sul)odomain w;, then we consider the Rayleigh quotient,
Qy, (V,v
ng('l)) T mwi(v,v)
by dimension reduction techniques or similar computations. See [5, 2]. For
example, we can consider the following simple example. In each subdomain
wi,izl,...,Ns:
(1) Generate forcing terms fi, f2,..., far randomly (f,, fr = 0);
(2) Compute the local solutions —div(kVus) = f, with homogeneous Neu-
mann boundary condition;

with v € W;. The snapshot space can be obtained
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(3) Generate W; = span{u,} U {1};

(4) Consider Q,y,, with W; in 3 and compute important modes.

In Table 1, we see the results of using the local eigenvalue problem versus
using the GMSFEM eigenvalue problem.

n |MS|Full|8 rand.|15 rand
10%]209( 35 37 37
109(346| 38 44 38

Table 1 PCG iterations for different values 7. Here H = 1/10 with h = 1/200. We use
the GMSFEM eigevalue problem with W; = V; (full local fine-grid space), column 2; W;
spanned by 8 random samples, column 4, and W, spanned by 15 samples, column 5.

5 Constrained coarse spaces, large overlaps, and DD

In this section, we introduce a hybrid overlapping domain decomposition
preconditioner. We use the coarse spaces constructed in [3], which rely on
minimal dimensional coarse spaces as discussed above. First, we construct
local auxiliary basis functions. For each coarse-block K € TH, we solve

2
the eigenvalue problem with Rayleigh quotient Q,,s(v) := %,
K

K=K, [Vx;|2. We assume A& < A < ... and define the local auxiliary
spaces,

where

Vaum(K) = Span{¢jK|1 <j< LK} and Vyyz = @Kvaux(K)-
Next, define a projection operator mx as the orthogonal projection on V.
with respect to the inner product fK Ruv and mp = @ 7. Let KT be
obtained by adding [ layers of coarse elements to the coarse-block K. The
coarse-grid multiscale basis ¥, . € V(KT) = Pj(K™T) solve

/ KV, Vo + / Rrp () ) TD(v) = / Kol mp(v), Vv € V(KT).
K+ K+t K+

The coarse-grid multiscale space is defined as V,,,s = span{zbj(-fr)ns}. We remark
that this space is used as the global coarse solver in our preconditioner. More
precisely, we define the (coarse solution) operator Aa’}ns : H (R, D) = Vs
by,

/ KVAGL (W)Vo =u(v) for all v € Ve

0,ms

D
where H~1(%, D) is the space of bounded linear functionals on the weighted
sobolev space, H'(x, D). In our preconditioner, we also need local solution
operators which are the operators A; ! : H~Y(%, D) + V(w;") defined by,

i,ms

/ KVAL (u) Vo +/ Rr(A; H(uy))mp(v) = ui(xv) for all v € V(wjh),
(A)+ ’ (.dj—

i
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where w;" is obtained by enlarging w; by k coarse-grid layers. Next, we can

define the preconditioner® M by
M= (1= Agh A (S Arh, ) = AAGL) + A b,
Note that this is a hybrid preconditioner as defined in [13]. We remark that
the constructions of the global coarse space and local solution operators are
motivated by [3], where a new multiscale space is developed and analyzed,
and it is shown to have a good convergence property independent of the
scales of the coefficient of the PDE. In addition, the size of the local problem
is dictated by an exponential decay property.
Using some estimates in [3], we can establish the following condition num-
ber estimate for cond(M ~1A),

1+C(1+A )3 Es R2
cond(M—14) < +C(1+ )1 i max{fil}
1-C1l+AY)2FE2m 7}

1-k
where E = 3(1+A71) (1+ (2(1 +A*%))’1) , C is a constant that depends

on the fine and coarse grid only and A = ming )\ﬁ( 41+ See [3] for the required
estimates of the coarse space. The analysis of the local solvers of the hybrid
method above will be presented elsewhere®. We see that the condition number
is close to 1 if sufficient number of basis functions is selected (i.e., A is not
close to zero)”. The overlap size usually involves several coarse-grid block
sizes and thus, the method is effective when the coarse-grid sizes are small.
We comment that taking the generous overlap 6 = kH/2 in (1), we get the
bound C(1 + 4/k?) with C independent of the contrast. The estimate (2),
on the other hand, gives a bound close to 1 if the oversampling is sufficiently
large (e.g., the number of coarse-grid layers is related to log(n)), which is due
to the localization of global fields orthogonal to the coarse space.

Next, we present a numerical result and consider a problem with perme-
ability x shown in Fig. 2. The fine-grid mesh size h and the coarse-grid mesh
size are considered as h = 1/200 and H = 1/20. In Table 2, we present the
number of iterations for using varying numbers of oversampling layers k, val-
ues of the contrast n and kp;-14 — 1, which is the condition number of the
preconditioned matrix minus one. We observe that when k& = 3, the condi-
tion number k-1, is almost one, which confirms (2). In practice, one can
choose smaller local problems with a corresponding increase in the number
of Yoy Thinbedanse.con b deigrmined by PIoctieed RS amtages it
the coarse mesh size is not very coarse. In this case, the oversampled coarse
regions are still sufficiently small and the coarse-grid solves can be relatively

5 Here we avoid restriction and extension operators for simplicity of notation.

6 We mention that the analysis does not use a stable decomposition so, in principle, a new
family of robust methods can be obtained.

7 Having a robust condition number close to 1 is important, especially in applications
where the elliptic equation needs to be solved many times.
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Fig. 2 Left: The coarse mesh used in the numerical experiments. We highlight a coarse
neighborhood and the results of adding 3 coarse-block layers to it. Right: The permeability
K used in the experiments. The gray regions indicate high-permeability regions of order n
while the white regions indicates a low (order 1) permeability.

# basis per w|k|# iter|ry—14 — 1 7 Dasis per @] 7 |Z ferlryy 14 — 1
3 3 3 5.33e-04

3 le+3 3 5.68e-04
3 4 2 2.57e-05

3 le+4 3 5.33e-04

3 > 2| 1.25¢-06 3 le+5 3| 6.74e-04
3 6 1 5.50e-08

Table 2 Condition number ;-1 , and number of iterations until convergence for the
PCG with H =1/20, h = 1/200 and tol = le — 10. Left: different number of oversampling
layers k with n = 1le + 4. Right: different values of the contrast n with k£ = 3.

expensive. Consequently, one wants to minimize the number of coarse-grid
solves in addition to local solves. In general, the proposed approach can be
used in a multi-level setup, in particular, at the finest levels, while at the
coarsest level, we can use original spectral basis functions proposed in [8].
This is object of future research.

6 Conclusions

In this paper, we give an overview of domain decomposition precondition-
ers for high-contrast multiscale problems. In particular, we review the design
of overlapping methods with an emphasis on the stable decomposition for
the analysis of the method. We emphasize the use of minimal dimensional
coarse spaces in order to construct optimal preconditioners with the condi-
tion number independent of physical scales (contrast and spatial scales). We
discuss various approaches in this direction. Furthermore, using these spaces
and oversampling ideas, we design a new preconditioner with a significant re-
duction in the number of iterations until convergence if oversampling regions
are large enough (several coarse-grid blocks). We note that when using only
minimal dimensional coarse spaces in additive Schwarz preconditioner with
standard overlap size, we obtain around 19 iterations. in the new method,
our main goal is to reduce even further the number of iterations due to large
coarse problem sizes. We obtained around 3 iterations until convergence for
the new approach. A main point of the new methodology is that after remov-
ing the channels we are able to localize the remaining multiscale information
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via oversampling. Another interesting aspect of the new approach is that the
bound can be obtained by estimating directly operator norms and do not
require a stable decomposition.
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INTERNODES for heterogeneous couplings

Paola Gervasio and Alfio Quarteroni

Abstract The INTERNODES (INTERpolation for NOnconforming DEcomposi-
tionS) method is an interpolation based approach to solve partial differential equa-
tions on non-conforming discretizations. In this paper we apply the INTERNODES
method to different problems such as the Fluid Structure Interaction problem and
the Stokes-Darcy coupled problem that models the filtration of fluids in porous me-
dia. Our results highlight the flexibility of the method as well as its optimal rate of
convergence.

1 Introduction

The INTERNODES (INTERpolation for NOnconforming DEcompositionS) method
is an interpolation based approach to solve partial differential equations on non-
conforming discretizations [3, 9]. It is an alternative to projection-based methods
like mortar [1], or other interpolation-based method like GFEM/XFEM [10]. Dif-
ferently than in mortar methods, no cross-mass matrix involving basis functions
living on different grids of the interface are required by INTERNODES to build the
intergrid operators. Instead, two separate interface mass matrices (separately on ei-
ther interface) are used. The substantial difference between GFEM/XFEM methods
and INTERNODES consists in the fact that the former ones use a partition of unity
to enrich the finite element space, while the latter does not add any shape function
to those of the local finite element subspaces.
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In this paper we apply the INTERNODES method to different problems such as
the Fluid Structure Interaction problem and the Stokes-Darcy coupled problem that
models the filtration of fluids in porous media. Our results highlight the flexibility
of the method as well as its optimal rate of convergence. Before addressing the two
specific problems above, we introduce an abstract formulation for heterogeneous
problems. This will also be useful to state the definition of the interface matching
operators that will stand at the base of the INTERNODES method.

Let Q C RY, with d = 2,3, be an open domain with Lipschitz boundary 0,
Q) and £, be two non-overlapping subdomains with Lipschitz boundary such that
Q=0,UQ,, and I" = 9R2; NN, be their common interface.

Given a function f defined in 2, we look for u; in € and u, in £2; such that

Lk(uk):f in .Qk, k= 1,2, (1)
D (up) = Py (uy) onI" (Dirichlet-like condition), )
Wi (u;)+%(u2) =0 onI" (Neumann-like condition), 3)
boundary conditions  on 9, @

where L; and L, are two differential operators (that may also coincide) while, for
k=1,2, &, and ¥, are suitable boundary operators restricted to the interface I,
that depend upon the nature of the differential operators L; and L,. More specifi-
cally, Neumann conditions refer here to natural conditions that are enforced weakly,
whereas Dirichlet conditions identify those essential conditions that are enforced
directly in the solution subspaces, via the suitable choice of trial functions (see, e.g.,
[13]). Typically for second order differential operators there is one Dirichlet-like
condition and one Neumann-like condition, however more general situations are
admissible.

Problem (1)—(4) provides an abstract setting for several kinds of differential prob-
lems; here we present two instances of (1)—(4) which the INTERNODES method is
applied to.

2 Fluid Structure Interaction problem

When modeling the coupling between fluids and solids, the viscous incompressible
Navier-Stokes equations are typically written in ALE (Arbitrarian Lagrangian Eu-
lerian) coordinates in the fluid domain, whereas an elasticity model (either linear or
nonlinear, depending on the type of structure) is solved in a reference frame; a third
field, the so-called geometry problem, allows to determine the displacement of the
fluid dogain which defines, in turn, the ALE map, see, e.g., [14, 8, 5].

Let Q; and Q2 be two non-overlapping reference configurations for the struc-
ture and fluid domains, respectively, and I" = 9.Q, N 8§f be the fluid-structure
reference interface. We assume that the boundaries aﬁk, for k = s, f are Lips-
chitz continuous and that (d€; \ I') is the union of two nonoverlapping subsets
aﬁ;} and 8?2,? on which Neumann and Dirichlet boundary conditions will be
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Fig. 1 At left: the ALE frame of reference. At right: the computational domains for the FSI prob-
lem: the fluid domain Q;, and the structure domain Q. I; = 027, NIy,

imposed, respectively. Then, for any ¢ € (0,7) let £, and Q;, be the computa-
tional structure and fluid domains, respectively, such that Q¢ = ﬁs, Qpp = .éf
and Q, = Qg UW The current configurations Q;, and Qf, are defined as
Q ={x=2,X) = i—i—ak(i,t), VX € ﬁk}, with k = s, f, where d, and &f are the
displacements induced by the dynamics (see Fig. 1).

We introduce the following entities:

- the outward unit normal vectors ny to d€2, (current configuration) and ny to
dQ, (reference configuration),

- the Arbitrary-Lagrangian-Eulerian (ALE) velocity w = aa# lk»
- the deformation gradient tensor for both structure (k = s) and fluid (k = f) Fy =

% :I—i—% for any X € €,

- the fluid velocity uy and the fluid pressure py, the dynamic viscosity of the fluid
u, the fluid density py,

- the Cauchy stress tensor for the fluid oy = of(uy,pr) = —p/I+ pu(Vuy +
(Vuy)T), and &4 such that & ns = det(Ff)F;Tafnf oDy,

- the Cauchy stress tensor o5 = o(d;) and the first Piola-Kirchhoff tensor a5 =
oy(dy) = det(Fy)os(d,)F, T for the structure, the structure density p;.

Then, for any ¢ € (0,T) the structure and fluid displacements (&S and ﬁf) and the
fluid velocity and pressures (uy and py) are the solution of the FSI system:

structure problem (in reference configuration)

o%d . o
psﬁ—v-m:0 in Q, o)
fluid problem (in current configuration)
du .
Pf(th T pr((uy—w)-Vjuy —V.o, =0, inQy,, (6)
V-uf:O in Qf,n @)

geometry problem (in reference configuration)
—Ad;y =0 inQr, (8

interface conditions (at interface in reference configuration)
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ong+omy=0 (dynamic) onT, 9)
dd, .

upo 7y, = a% (kinematic) onT, (10)

af = as (adherence)  on r ,  (11)

completed with: the Dirichlet boundary conditions uy = g? on FfDI and d = g? on

ffo con f d, = g? on I;2, the Neumann conditions o My, = g?-’ on 1}1\;, osn, =gV

on IV, and the initial conditions u F=ugin Qy, d, =d,, aa‘}? —=d; in Q.

System (5)—(11) can be recast in the form (1)-(4) by associating the structure
problem with L; () (now representing nonlinear operators, the choices of u; and u;
are obvious), the fluid problem and the geometric problem with L, (u5 ), both the ad-
herence and the kinematic interface conditions are interpreted as @-like conditions
(they involve the traces of the unknowns functions on I"), whereas the dynamic in-
terface condition is interpreted as a ¥-like condition (as it involves normal stresses
onl).

3 Fluids filtration in porous media (Stokes-Darcy coupling)

Flow processes in a free-fluid region adjacent to a porous medium occur in many
relevant applications. Under the (realistic) assumption that the Reynolds number in
the porous domain is small, the Navier-Stokes equations could be therein up-scaled
to a macroscopic level and replaced by the Darcy law.

Consider the case of a tangential flow of a fluid over a porous bed. This situation
is known in literature also as near parallel flows [12], i.e. flows for which the pres-
sure gradient is not normal to the interface and the Darcy velocity inside the porous
domain is much smaller than the velocity in the fluid domain. The most widely used
approach to couple the free fluid regime with the porous-medium one consists of:

- the introduction of an artificial sharp interface I" between the Stokes (or fluid) do-
main £ and the Darcy (or porous) domain ;

- the imposition of the mass conservation, the balance of normal forces and the
Beavers-Joseph-Saffman (BJS) experimental law on I" ([7]), see Fig. 2.

To write down the associated mathematical model, we introduce the following
entities:

- the outward unit normal vectors ny to d£2;,
- the dynamic viscosity u, the density p, the velocity ug and the pressure p; of the
fluid in £,
the Cauchy stress tensor for the fluid o = o (uy, py) = — psI+ 1 (Vug+ (Vug)7),
the Darcy velocity u, and the intrinsic average pressure p, in the porous domain,
the intrinsic permeability kK = k(x) (for any x € ) of the porous media,
two given body forces f; and £,
- the normal unit vector n;- to I" directed from g to £2; (then nr =ng = —n, on
I') and an orthonormal system of tangent vectors 7, with j=1,...,d —1lonT.
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Fig. 2 A typical setting of solid wall ——

the Stokes-Darcy coupled N\

problem for a fluid over a - %

porous bed — K > OO — I
porous plee : Q
medium

The coupled problem that we consider reads:

Stokes problem (fluid domain)

—V.o,=1;, V-u,=0 in Q;, (12)

Darcy problem (porous domain)

K

ud:_ﬁ(vpd_fd)a Vou; =0 in Qy, (13)

interface conditions (sharp interface)

u;-ng+u;-ng =0 (mass conservation) onlI, (14)

(onyg) ng+py =0 (balance of normal forces) onI’, (15)

(osng) -7+ u,-7;=0, j=1,...,d—1,(BJS condition) onI’, (16)

TiTkTj
where « is a suitable parameter depending on the porous media. Indeed, the BJS
condition is not a coupling condition, as it only involves quantities from one side.
The system (12)—(16) is completed with suitable boundary conditions that read
(as usual, D stands for Dirichlet and N for Neumann): uy = g? on QQ‘YD , oxng =0
on QN py=00n QP u;-n; =g on dQY, where we assume that Q) and

9 QP are non-intersecting subsets of 92 \ I such that IQY¥ UdQP = 9\ I".

The coupled system (12)—(16) can be recast in the form (1)—(4) by associating the
Stokes problem with L, (u2) and the Darcy problem with L; (#;). When considering
the weak (variational) formulation of the coupled problem (12)—(16), the interface
coupling conditions (14) and (15) can be treated in different ways depending on the
specific variational form used. In the form used in Sect. 6, the balance of normal
forces (15) plays the role of a &-like condition (2), while the mass conservation
condition (14) will be treated as a ¥-like condition (3). In specific circumstances,
however, for instance when the interface I is parallel to one of the cartesian coordi-
nates, condition (14) can be easily enforced as a Dirichlet condition (thus under the
form (2)) on the space of trial functions and condition (15) as a Neumann (natural)
condition, e.g., like (3).

4 Intergrid operators for non-conforming discretization

We consider two a-priori independent families of triangulations 7 ;, in £ and
D, in 5, respectively. The meshes in Q1 and in £, can be non-conforming on
I' and characterized by different mesh-sizes /; and h;. Moreover, different poly-
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Fig. 3 I and I3 induced by the triangulations .7} ,, and .75 ,, when d = 2

nomial degrees p; and p, can be used to define the finite element spaces. Inside
each subdomain £; we assume that the triangulations .7 j, are affine, regular and
quasi-uniform ([15, Ch.3]).

Then, for k = 1,2, let X, = {v € CO() : vir € Py, VT € Fi, } be the usual
Lagrangian finite element spaces associated with .7, , while Y; , = {4 =v|r, v €
Xk,hk} are the spaces of traces on I of functions in Xy, , whose dimension is ry.

We denote by I7 and I the internal boundaries of Q; and 2;, respectively,
induced by the triangulations .7}, and % ,. If I' is a straight segment, then
I1 =1, =T, otherwise I and I, may not coincide (see Fig. 3).

Fork=1,2, let {xﬁrk)7 ... ,x,(fz‘)} € I'; be the nodes induced by the mesh .7 j, .

We introduce two independent operators that exchange information between the
two independent grids on the interface I': Iy : Y5 4, — Y15, and Iy : Yy, — Yoy, .

If I1 =I5, I1}; and I'l;; are the classical Lagrange interpolation operators defined
by the relations:

(ﬂ))_

= U p, (X; i=1,...,n, Yo p, €Yoy,  (17)
1“2)) I;

= (), i=1,m, Vg €Y. (18)

(ITa oy ) (x
(I 1y ) (%!

If, instead, I1 and I are geometrically non-conforming, we define Il}, and Il
as the Rescaled Localized Radial Basis Function (RL-RBF) interpolation operators
introduced in formula (3.1) of [4]. In both cases, the (rectangular) matrices associ-
ated with II), and ITp; are, respectively, Rjp € R"*"2 and Ry; € R™*" and they
are defined by:

(R12)ij = (letu'j(Z))(XLEF])) i= 1)"'7’11’ J: 17"'7"27 (19)

i=1,...,n, j=1,...,n1,

where {,ufk)} are the Lagrange basis functions of ¥ 5, , fork=1,2and i =1,...,n.

In the special conforming case for which I1 = I3, h; = hy and p; = p», the in-
terpolation operators IIj> and I are the identity operator and Ry = Ry = I (the
identity matrix of size n; = ny). Finally, let Mp; such that

M)y = W w0 . k=12, (20)
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be the interface mass matrices. To assemble both the interface mass matrices and
the interpolation matrices, for both the Lagrange and the RL-RBF approaches, the
only information that are needed are the coordinates of the interface nodes.

Let £,k = 1,2. If p® € [¥; 4,]¢ with d = 2,3; by writing [T u®) we mean that
the interpolation operator Iy is applied to each component of the vector-value func-
tion ¥, Finally, M, = diag(Mr;, ...,Mr;) and Ry = diag(Ru, . ..,R) are block
diagonal matrices with d blocks.

5 INTERNODES applied to the FSI system

We define the functional spaces:

Vf_’[ == [Hl(QfJ)]d, QfJ = LZ(Q]“J), V?l == {V 6 Vf,[ V= 0 on anD[},
Vo, ={veVy,: V:OOHQQ%UE}, V, = [H'(Q,)]¢, o
VP ={veV,: v=000dQP}, Vi={veV,: v=00n09Q UTI},

-~

Vo= [H'(2))7, VP={veV,:v=00n0Q%, A=[Hy D),

ey

and the lifting operators % : A — VP sit. (ZM)]
(%fJA)‘F, = Ao 2;,11 .

Let us discretize the time derivatives by standard finite difference schemes (e.g.
a backward differentiation formula to approximate the first order derivative and
the Newmark method to approximate the second one). The weak semi-discrete
(continuous in space) counterpart of the FSI system (5)—-(11) reads: for any time
level t*, with n > 1, find u? € Vym, p? € Qfm, d? € Vg and df € V; satisfy-

=X Bpi A= V2, st

ing the Dirichlet boundary conditions w} = g?(:") on I, and a} =gP(1") on
ffo C 09y, d" = gP(1") on [P and the initial conditions u} =g in Qp, d° = d,

and aadf =0 = d; in £y, such that:

Ay(d{ V) = Z] (V) YW, € VY, (22)

df(“%,a?;"f) + By (v, Py) = F§(Vy) W EVEa,  (23)

Br(uf,q) =0 Vg € Qfm, (24)

G(d:,v,) =0 YW, € V2, (25)

A (@ R ) + I (W), A ) + By (Rs i, ) R (26)
=T (%) + T} (Zrp)  VRE A,

o =ad +by !, dj=d! onT, Q27)

where
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(s, V) =[5 (Psards Vs + G : Vi) dQ,
9\ ( ) fa_QNgsN Vd')/-i-fQ bn ld.Q %(df,vg) fﬁfVﬁdf:V;ﬁng,

Ay (up dpivy) = fo, Prlaruy+ ((uy—w)-V)uy)-vydQ
+Jo,, L(Vuy+(Vuy)") : Vvy)dQ,
Br(ur.ar) = [a,, (V-ur)qdQ,  Fi(vp) = fyan g -vrdr+ o, byl dQ,

with ay,a;, a3 suitable real values and b’f*l ,bgfl, and bg’*l (depending on the so-
lution at the previous time levels) suitable vector functions arising from the finite
difference discretization of the time derivatives.

Equation (26) is the weak counterpart of the dynamic interface condition (9).

We consider now independent finite element space discretizations (as described
in Sect. 4) in Q and £, (a suitable inf-sup stable couple of finite elements will
be considered in the fluid domain) that may induce two different discrete interfaces

=TI » NI and F T hy NI in the case that I" is curved as in Fig. 3, right. Then

we use the subindices /g, for k = s, f, to characterize the subspaces of the functional
spaces (21) as well as the discrete counterpart of each variable appearing in the
system (22)—(27). From now on, in d?.,hg u}’h/, d?,hf, and p},hf, the super-index n
will be omitted for sake of notations.

In order to apply the INTERNODES method to the discrete counterpart of (22)—
(27), we define the scalar quantities:

rst—d( yhrw%slil ) ys"( As))7 i=1,...,d-ny,
rei= y(upy,.dy, hfn%’fuf )+ By (%s i )apfh,«) (28)
—FH % ,< )), i=1,....dny

(where {ﬁl(k }d "k are the Lagrange basis functions of [¥; 5, ]%) and

d-nk

Zk,j:Z(MI:—icl)jirk,ia k:Saf7j:15"'7d'nk7 (29)
i=1

d- RO
and the functions ry,, = Z k., NE ),Whlch are the so called discrete residuals and
=1
are the discrete counterpart of o ny.
The INTERNODES method applied to system (9)—(11) at any ¢" reads:

A op Vo) = F (Vo) W, € Vi, (30)
ey (ufhf’dfhf’vfhf)+’%f(vfhfapfhf) ﬁﬂ(vf,hf) VVf.hf GV.(])fﬁfJn, 3D
Br(Wsngdsang) =0 Vqgn, € Qf hyans (32)
g(df,hfai’\g,hg) =0 VAg he S Vg hg> (33)
g, + I fXfh, = 0 (dynamic) on FS, (34)

Uy, O Dy = Hfs(aﬁ&hs —&—Eg‘*l) (kynematic) on fﬁ (35)
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d fohp =11 fsas,hs (adherence) on ff (36)

The conditions (34)—(36) are the INTERNODES counterpart of the interface con-
dition (9)—(11), obtained by applying the intergrid operators I, and Il;; defined in
Sect. 4. More precisely, if we make the associations s <> 1 and f <> 2, the operator
II; (= ITy; ) is used to interpolate on I'y each component of the discrete traces d j,

. .. ad = . .
and (the discretization of) 5;’” | that are known on I, while IT; f(: Iy,) is used

to interpolate on Iy each component of the discrete counterpart of the normal stress
o /iy that is known on I.

By construction, ry 5, € Y = [Yk,hk]d .fork=s, f,and thenry, has the sufficient
regularity to be interpolated.

Remark 1. The scalar values (28), typically computed as algebraic residuals at the
interface of the finite element system, are not the coefficients of the function ry 5,

w.r.t. the Lagrange expansion { ﬁ&k) }. rather the coefficients of ry 5, w.r.t. the canon-

ical basis {'Q,ka) }flznl" of Y} j, - The latter is the dual to {ﬁﬁk)} that is it satisfies the

relations (1@(](), ﬁﬁ‘k))LZ(fk) = §;j, fori, j=1,d-...,ng, with §;; the Kronecker delta.

It can proved (see [2]) that @k) = 27':”’1‘ (M;k1 ) jiﬁﬁk), i.e., the interface mass matrix
M; and its inverse play the role of transfer matrices from the Lagrange basis to the

dual one and viceversa, respectively.

Denoting by ryz, ry, uy, dg, dy, bg’_l, and dy the arrays whose entries are the La-

grangian degrees of freedom of ry , o Tsgs Uf g ds .. dy = and b’;’l , respectively,
the algebraic form of the INTERNODES conditions (34)—(36) reads:

M+ Ry M1y =0, (37
up= Rfs(a3ds + bgl_l), (38)
dy = Ryd,. (39)

Notice that (37) can be equivalently written as ry + Mp R, fM;f1 re=0.
The INTERNODES method has been successfully applied to the FSI system in
[8, 5].

6 INTERNODES applied to the Stokes-Darcy system

We define the functional spaces:
Vo=[H'(Q), VP ={veV,: v=00n00Q7}, (40)
Vo={ve[lX(Q)]": V-vel*(Q,)}, VI={veVy: v.n=00n9Q}},
0, =L2(), Q=L (), A=Hy (D).
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Then we consider the following weak form of the Stokes-Darcy coupled problem
(12)—(16) ([11]): find us € Vg, ps € Qs, ug € Vg, py € Qq, and A € A with u; = gP
on 9QP, u;-ny =g on QY such that:

2,u/ D(uy) ZD(Vs)d.Q—/ psV-vdQ +/ Avg-ngdlD 41)
Qs Q r
d—1
+Z/(x,-(uy~1',')(vs~rj)d1":/ f,-vydQ VV‘YEV?,
qsV-u,dQ =0 Vg, € Oy,
u/ (n’lud)-vdd.Q—/ pdv-vdd_(z+/,1vd-nddr (42)
Qd Qd r
:/ £;-v,dQ Vv, € VI,
Qq
| av-uid@ =0 Va4 € Qu,
Q4
/us-nsn+/ud~ndn:0 vn eA, 43)
r r

where D(v) = (Vv+(Vv)") /2, while o; = ap/, /7] kT;.

The Lagrange multiplier A € A is in fact A = p; = —(osng) -ngon .

We discretize both Stokes problem (12) and Darcy problem (13) by inf-sup stable
(or stabilized) couples of finite elements (see, e.g., [6]). Independent finite element
space discretizations (as described in Sect. 4) are considered in Qg and Q, that
may induce two different discrete interface I's = 5, NI and Iy = J; 5, NI in
the case that I' is curved as in Fig. 3, right. Then we use the subindices /, for
k = s,d, to characterize the subspaces of the functional spaces (40) as well as the
discrete counterpart of each variable appearing in the system (41)—(43). For k = s, d,
Ay =ANYp,.

In order to apply the INTERNODES method to the discrete counterpart of (41)—
(43), we define the scalar quantities:

Tki = \/F(uk,hk 'nk).ui(k)a i= 17"'7nk7 k= S,d, (4’4)

(where {ui<k) }#* | are the Lagrange basis functions of ¥} ) and
Nk
=Y (M jires,  j=1,...,m, k=5, (45)
i=1

and the discrete functions (belonging to ¥ 5, )

v K
Wi, = Z T jH; (46)
=1
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The INTERNODES form of problem (41)—(43) reads: find uy;,, € V5., psp, €
O hy» Udhy € Vany Pany € Qapgs Asiry € Aspg and Agp, € Ag p, (satisfying the given
boundary conditions) such that:

2u /Q D(uys) : D(vyy,)dQ — /Q PenV Von dQ + /F AssVon -mydl (47)

d-1
+ Z /F(Xj(us.,hs 'Tj)(Vs,hS -Tj)dF = /_Q fs'Vs,hS ds2 VVSJ,S S Vghsv
=1 =
/{; qhv.,hxv Uy g dQ =0 VQS,hS S Qs,hsa
H/ (& "agp,) Van, dQ */ PdhyV Van, dQ (48)
Q4 /4
+ /F)‘d:hdvdﬁd -ngdl’ = / f;- Vd hy dQ VVd,hd S V%hd,
* v 8éd
/Q qan,V-ugp,d2=0 Vqan, € Qdnys
d
Iywy g +wan, =0 on I, (49)
Asig = IaAa p, on I;. (50)

The conditions (49)—(50) are the INTERNODES counterpart of the interface con-
dition (14)—(15), obtained by applying the intergrid operators I}, and IT; defined
in Sect. 4. More precisely, if we make the associations d <+ 1 and s <+ 2, the operator
Iy (= ITy) is used to interpolate on I the discrete trace of pg s, that is known on
I;, while I (= ITj) is used to interpolate on I; the weak counterpart of U, - N
that is known on I§.

Denoting by wy, wy, ts, and tg, the arrays whose entries are the Lagrangian de-
grees of freedom of Wy, , Wa n,» Asn,» and Ay, respectively, the algebraic form of
the INTERNODES conditions (49)—(50) reads:

RdsMEYIWs —|—M1:d1W01=07 ty = Rygty. on

We test the accuracy of INTERNODES by solving problem (12)—(16) with:
Qs = (0,1) x (1,2), ;5 = (0,1) x (0,1), u = 1, k = 1072, k = kI, boundary
data and f; = f,; are such that the exact solution is uy = x[—sin(Zx)cos(5y) —y+
1,cos(5x)sin(Zy) —1+x], py=1—x,uy = k[sin(Fx) cos(Zy) +y,cos(Fx)sin(5y) —
1+x], ps = 2 cos(%x)sin(Zy) — y(x — 1). The approximation in each subdomain
is performed with stabilized hp-fem on quadrilaterals ([6]). The errors e; = ||u; —
Ul ) +11Ps = P2 o, and eq = [[ug —wap,ll2q,) + 1Pa = Pan, |10y
are shown in Figure 4, versus either the mesh sizes hy, iy and the polynomial de-
grees py and py, they decay exponentially w.r.t. the polynomial degrees (Fig. 4, at
left) and with order ¢ = p; = py w.r.t. the mesh sizes (Fig. 4, at center and at right).

In Fig. 5 we show the INTERNODES solution computed for the cross-flow mem-
brane filtration test case with non-flat interface I'. The setting of the problem is
given in Sect. 5.3 of [6]. We have considered either a cubic spline interface (Fig. 5
at the left) and a piece-wise interface (Fig. 5 at the right). Quadrilaterals 2p-fem are
used for the discretization in either Q; and ;. The solution at left is obtained with
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10
hy = 0.2, hy = 0.333 Pu=ps=2 pi=ps=4
Pe=ps+1 1079 / 10° e
10} /
107 / jz 107 o 4
107107
1 2 3 4 5 6 7 o0 004 007 01 02 03 0.02 004 007 01 02 03
Ps hsy ha hsy ha

Fig. 4 Errors e (red) and e; (blue) for the Stoked-Darcy problem (12)-(16) solved on non-
conforming meshes by the INTERNODES method

Fig. 5 INTERNODES solution of the Stokes-Darcy coupling. The velocity field uy is red in Qg
and black in €, the underground colored scalar field the hydrodynamic pressure. I" is curved at
left and piece-wise linear at right

hs =3/8, hy =1/2, and p; = py = 4, that at right with &y = hy = 3/8, p; =4 and
p4 = 3. RL-RBF interpolation is used to build the intergrid operators (17) when I
is curved, and Lagrange interpolation when I" is piece-wise linear.

Numerical results show that INTERNODES keeps the optimal accuracy of the
local discretizations and that it is a versatile method to deal with non-conforming
interfaces.
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Domain Decomposition Approaches for PDE
Based Mesh Generation

Ronald D. Haynes

Abstract Adaptive, partial differential equation (PDE) based, mesh generators are
introduced. The mesh PDE is typically coupled to the physical PDE of interest and
one has to be careful not to introduce undue computational burden. Here we pro-
vide an overview of domain decomposition approaches to reduce this computational
overhead and provide a parallel solver for the coupled PDEs. A preview of a new
analysis for optimized Schwarz methods for the mesh generation problem using the
theory of M—functions is given. We conclude by introducing a two-grid method with
FAS correction for the grid generation problem.

1 Introduction

Automatically adaptive and possibly dynamic meshes are often introduced to solve
partial differential equations (PDEs) whose solutions evolve on disparate space and
time scales. In this paper we will review a class of PDE based mesh generators
in 1D and 2D - a PDE is formulated and its solution provides the mesh used to
approximate the solution of the physical PDE of interest. The physical PDE and
mesh PDE are coupled and are solved in a simultaneous or decoupled manner. The
hope is that the cost of computing the mesh, by solving the mesh PDE, should not
substantially increase the total computational burden and ideally the mesh solution
strategy should fit within the overall solution framework.

Meshes which automatically react to the solution of the physical PDE fall into
(at least) two broad categories: hp-refinement and r—refinement — PDE based mesh
generation which evolves a fixed number of mesh points with a fixed topology. The
choice of mesh generator is often predicated on the class of problem and experience
of the practitioner. The PDE based mesh generators, motivated by r-refinement, dis-
cussed here, can be designed to capture dynamical physics, Lagrangian behaviour,

Ronald D. Haynes
Memorial University, St. John’s, Newfoundland, Canada, e-mail: rhaynes @mun.ca
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symmetries, conservation laws or self—similarity features of the physical solution,
and achieve global mesh regularity.

In this overview paper, we review parallel solution strategies for the mesh PDE
and the coupled system using domain decomposition (DD) and survey various
known theoretical results. The analysis of the optimized Schwarz method (OSM)
uses several classical tools including Peaceman-Rachford iterations and monotone
convergence using the theory of M-functions. We present previews of two exten-
sions of our previous work. We provide an analysis of OSM on two subdomains
using the theory of M—functions. We also introduce a coarse correction for the mesh
PDE to improve convergence of DD as the number of subdomains increases.

In this paper we provide a brief review of PDE based mesh generation (Section
2), an overview of, and theoretical convergence results for, Schwarz methods to
solve the mesh PDE (Section 3), a new strategy for the analysis of OSM and a new
coarse correction algorithm to solve the nonlinear mesh PDE (Section 4).

2 PDE based mesh generation

We consider PDEs whose numerical solution can benefit from automatically chosen
non-uniform meshes. r-refinement adapts an initial grid by relocating a fixed number
of mesh nodes. The mesh is determined by solving a mesh PDE simultaneously, or
in an iterative fashion, with the physical PDE. Suppose the PDE defined on the
physical domain x € Q, = [0, 1] is difficult to solve in the physical co-ordinate x.
We compute a mesh transformation, x = x(&,t), so that solving the problem on
a uniform mesh & = %7 i=0,1,...,N, with moderate N, is sufficient. In one
dimension, such a mesh transformation can be constructed by the equidistribution
principle of de Boor [4]. Given some measure of the error in the physical solution,
M (called the mesh density function), we require

xi(1) 1
/ M(t,5,1)dF = / M(t,%,u) d5,
xi—1(t) N Jo

which says that the error in the solution is equally distributed across all intervals.
If we assume some approximation to the physical solution « is given, then in the

steady case a continuous form of the mesh transformation can be found by solving
the nonlinear boundary value problem (BVP)

0 0
— I M(x(&))==x(E) y =0, subjectto x(0)=0andx(1)=1. (1)
98 98
The boundary conditions ensure mesh points at the boundaries of the physical do-

2
main. This is equivalent to minimizing the functional /[x] = % Iy (M (x)j—g) dé.

Discretizing and solving gives the physical mesh locations directly, however the
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Euler-Lagrange (EL) equations are nonlinear, and a system of nonlinear algebraic

equations must be solved upon discretization.
As an example, consider construct-

ing an equidistributing grid for the

function u(x) = (e** —1)/(e* — 1) for

large A. A uniform grid in the physi-

cal co-ordinate x would require a large

number of mesh points to resolve the

boundary layer near x = 1. Instead we

solve the nonlinear BVP above on a

i

uniform grid & = 5 with M(x,u) ~

v/ 1+ |uxx|? and we obtain the grid lo-
cations corr.espon.dlng. to the abscissa of Fig. 1 An example of an equidistributing grid for
the green circles in Figure 1. The solu- , poundary layer function.

tion on a uniform grid (white squares)
is shown for comparison.
Alternatively, we can solve for the
the inverse transformation, & (x), as the solution of

i(M}x)jf)—o, E0)=0, E(1)=1,

or as the minimizer of the functional /[§] = § Jo M%x) (%)2 dx.

The EL equations are now linear, and discretizing on a uniform grid in x gives
a linear system for the now non-uniform points in the computational co-ordinate &.
We have to invert the transformation to find the required physical mesh locations. It
is easier to ensure well-posedness in higher dimensions (d > 2) for this formulation.

In two dimensions, solution independent, but boundary fitted meshes, can be
found by generalizing the formulations above, but setting the mesh density to be the
identity function. The mesh transformation = = [x(§,1),y(§,n)] : Qc — £, can be
found by minimizing

YA (E e RO )

The EL eqns are

2 2 2 2

Pa Py By

dE2  oan? 2E2  oJn?
Solving the EL equations subject to boundary conditions, which ensure mesh points
on the boundary of 2, gives a boundary fitted co-ordinate system. Care is required,
however, as folded meshes may result if €2, is concave (see the left of Figure 2
where Q,, is L-shaped and Q. = [0, 1]?).

If instead we solve for the inverse mesh transformation & = [ (x,y),n(x,y)] :

Q, — £, by minimizing
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T
o i

%y Q. —Q, En:Q,— Q.

Fig. 2 PDE generated physical grid lines on L—-shaped domains.

-1 [ ) G () e

or solving the EL equations

2 2
0, 9N, 9m_,
oxz = 0y?

%8 9%
oxr  dy?

subject to appropriate boundary conditions, we obtain the mesh on the right of Fig-
ure 2. This is the equipotential mesh generation method of Crowley [7]. The phys-
ical grid lines are obtained as level curves & = C, 1 = K. This approach is more
robust — well-posed if the domain £, (which we get to choose) is convex, see [8].
But as mentioned previously it is more complicated to get the physical mesh.
Solution dependent meshes in higher dimensions can be constructed by speci-
fying a scalar mesh density function M = M (u,x) > 0, characterizing where addi-
tional mesh resolution is needed, and minimizing /[x] = } f_Qp L Yi(VENTVEdx.
The EL equations give the variable diffusion mesh generator of Winslow [26],
which requires the solution of the elliptic PDEs —V - (ﬁV&,) =0, i=1,2,....d.
This gives an isotropic mesh generator.
Godunov and Prokopov [10], Thomp-
son et al. [25] and Anderson [2], for ex-
ample, add terms to the mesh PDEs to
better control the mesh distribution and
quality. As an example, in Figure 3, we
illustrate the mesh obtained by adapt-
ing a mesh for a solution with a rapid
transition at x = 3/4 and using an arc-
length based M. Fig. 3 A mesh generated using a Winslow gener-
If the physical solution has strong ator on an L-shaped domain.
anisotropic behaviour, corresponding
mesh adaptation is desired. This can
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be achieved by using a matrix—valued diffusion coefficient [6] and minimizing
lz]=1 f_Qp Yi(VENT M~ (VE)dx where M is a spd matrix.

These approaches can be extended to the time dependent situation, where x =
x(&,t) or & = £(x,t); we obtain moving mesh PDEs as the modified gradient flow
equations for the adaptation functionals.

In addition to the variational approach to derive the mesh PDEs mentioned above,
there are other PDE based approaches including harmonic maps, Monge—Ampere,
and geometric conservation laws, see [15] for a recent extensive overview.

3 Domain Decomposition approaches and analysis for nonlinear
mesh generation

We wish to design and analyze parallel approaches to solve the continuous (and
discrete forms) of the PDE mesh generators discussed above. Our research goal
is to systematically analyze DD based implementations to solve mesh PDEs and
coupled mesh—physical PDE systems.

3.1 Mesh/Physical PDE solution strategies

There are several approaches to introduce parallelism, by domain decomposition,
while solving PDEs which require or benefit from a PDE based mesh generator. As
an example we consider generating a time dependent mesh for a moving interior
layer problem. In [14] we apply DD in the physical co-ordinates by partitioning
£, and use an adaptive, moving mesh solver in each physical domain. This is illus-
trated in the left of Figure 4 for two overlapping subdomains; the solver tracks a front
which develops and moves to the right. In each physical subdomain, the mesh points
react and follow the incoming front. In general, this approach needs hr—refinement
to predict the number of mesh points in each subdomain and could result in a severe
load balancing issue. Alternatively, one could fix the total number of mesh points
and apply DD in the fixed, typically uniform, computational co-ordinates, by par-
titioning £2.. This gives rise to time dependent or moving subdomains, as viewed
in the physical co-ordinate system, as shown in the right of Figure 4 for a similar
moving front. The subdomains are shaded dark and light gray, with the overlap in
between.
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Fig. 4 DD in ), (left) and DD in Q. (right).

Ronald D. Haynes

In Figure 5 we illustrate a two dimensional mesh computed using a classical

Schwarz iteration applied in £2., on two
overlapping subdomains (the overlap is
shown in green). DD is applied to the
two dimensional nonlinear mesh gener-
ator of [16]. Here the mesh is adapted
to the physical solution given by

1 1 1
u=tanh(R(z- — (x=3)* = (y= 5 %))
and

B a*Vu-Vul
 14+bVuTVu

where a =0.2 and b = 0.

Fig. 5 DD solution of two-dimensional mesh
generator

3.2 PDE Based Mesh Generation using Schwarz methods

Here we will focus on the analysis of DD methods for the mesh PDE applied in
the computational co-ordinates, assuming an approximation to the solution of the
physical PDE is given. To generate the physical mesh locations directly, we are
interested in the solution of the nonlinear BVP (1).

A general parallel Schwarz approach would partition £ € €, into two subdo-
mains ; = (0, ) and 2, = («, 1) with o < 8. Let x] and x solve
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d pdX\ d N AN
A (M(xl)d§1> =0 onQ JE (M( ) dg) =0 on&,
x1(0) =0 By(x5(@)) = Ba(xi ! (@)
Bi(x{(B)) = Bi(x5'(B)) (1) =1,

where B > are transmission operators between the subdomains.
If 0 < i < M(x) <11 < oo, we show in [9] the overlapping (8 > ) parallel clas-
sical Schwarz iteration (B » = I) converges for any initial guess x0(c), x3(8), with

a contraction factor p := %% < 1 which improves with the size of the overlap. As

expected a < BB is needed for convergence. A multidomain result is also given in [9]
with a contraction rate that deteriorates as the number of subdomains increases. This
result motivates the need for a coarse correction (see Section 4). Optimal Schwarz
methods using non-local transmission conditions (TCs) giving finite convergence
have been proposed and analyzed in [9, 12]. This comes at a cost as nonlocal TCs
are expensive!

We can recover a local algorithm, an OSM, on 2 subdomains by approxi-
mating the non-local TCs. We decompose & € [0,1] into two non-overlapping
subdomains Q; = [0,a] and £, = [a, 1] and approximate the optimal TCs with
nonlinear Robin TCs. Using the notation above, we choose Bi(-) = M(-)dg (-) +
p() and  By(-) =M(-)d¢(-) — p(-), where p is a constant chosen to improve
the convergence rate. The OSM is equivalent to a nonlinear Peaceman—Rachford
interface iteration for the interface values

(P —Ro)x3 " (@) = (pI — R )x]} (@)

’ 2
(pI+ R (@) = (pl + Ro)¥3(), ()
where the operators R and Ry, given by R (x) = % JoMdxand Ry (x) = ﬁ jx] M dx,
are strictly monotonic (increasing and decreasing respectively). This type of itera-
tion has been analyzed by Kellogg and Caspar [17] and Ortega & Rheinboldt [18].
In [9] we show convergence for all p > 0 and the contraction rate can be minimized
by an appropriate choice of p.

An analysis of the classical Schwarz algorithm at the discrete level has been pro-
vided in [13] in the steady and time dependent cases using a 8 method to discretize
in time. Using the notion of M—functions, which we will revisit in the next sec-
tion, we have shown convergence of nonlinear Jacobi and Gauss—Seidel (and block
versions) starting from super and sub solutions or from a uniform initial guess.

A dramatically different parallel technique for PDE mesh generation has been
considered by Haynes and Bihlo in [3]. Motivated by the possible lower accuracy
requirements for mesh generation we have investigated stochastic domain decom-
position (SDD) methods, proposed by Acebrén et al. [1], Spigler [24], and Peirano
and Talay [19]. These methods use the Feynmac-Kac formula (and Monte-Carlo) to
approximate the linear mesh generator in 2D/3D along artificial interfaces. These
interface solutions then provide boundary conditions for the deterministic solves
in the subdomains. No iteration is required, and the method is fully parallel. The
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method may be expensive in the relatively rare situation that the mesh is needed
with high-accuracy due to the slow convergence of the Monte Carlo evaluations.

4 Some Extensions

In this section, we provide previews of two extensions of the work described above.

4.1 Optimized Schwarz on Many Subdomains

Her we show an alternate approach to obtain a sufficient condition for convergence
of the OSM for the grid generation problem. This approach, which guarantees a
monotonic convergence result, is generalizable to an arbitrary number of subdo-
mains. Here we will give a flavour of the analysis on two subdomains. The general
result was studied by Sarker [22] and will be published elsewhere.

To demonstrate the difficulty of generalizing the OSM analysis to an arbitrary
number of subdomains, consider partitioning €2, into three non—overlapping sub-
domains, [0, o], [et, 2] and [0, 1]. The analysis of the parallel OSM to generate
equidistributing grids requires us to study the interface iteration

Y+ RV = p R (s,

Yy — Ro(8,38) = pyi ' — R (0, ;
n R n n 1 R n—1 ( )

pys +Ra(x3,y5) = pxs +R3 (x5, )5~ )v

pYi—R3(¥3,04) = pys ' —Ro( 105,

1
;i —0oG_

where x{ =0and y§ = 1, Ri(x;,y;) = M(o)do, and we define ap = 0 and
o =1.

The Peaceman—Rachford analysis relies on the monotonicity of the operators
which define the subdomain solutions. The difficulty in the analysis of (3) lies in the
coupled system of equations which arise from the middle subdomain. This coupled
system involves the operator pI + H. The operator H = (—R,R»)” is not mono-
tonic and hence the two subdomain analysis can not be repeated, at least not in a
straightforward way.

We pursue an alternate tack to obtain a sufficient condition for convergence. It is
well known that for linear systems, Ax = b, Gauss—Seidel and Jacobi will converge
for any initial vector if A is symmetric positive definite, or if A is an M—matrix (for
example if a;; < 0,i # j, a;; > 0 and A is strictly diagonally dominant). Analogous
results for nonlinear systems, Fx = b, where

Fx=(fi(x1,.. s x0), o1,y X0) ey fu(xts. o ox0))T and b= (by,ba,...,b,)T,
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were obtained by Schechter [23] who showed if F has a continuous, symmetric, and
uniformly positive definite (Frechet) derivative then nonlinear Gauss—Seidel con-
verges. The analogous M-matrix condition for convergence was extended to the
nonlinear case by Rheinboldt [21], with the introduction of M—functions. To be an
M—function requires F to have certain monotonicity, sign and diagonal dominance
properties. Rheinboldt gives the following sufficient condition to guarantee a non-
linear map F is an M—function.

Theorem 1. Let D be a convex and open subset of R". Assume F : D C R" — R" is
off-diagonally non-increasing, and that for any x € D, the functions g; : S; C R — R"
defined as

qi(t) = fj(x+Tei),i:1,...,n, with S;={t:x+1e' €D},

™-

1

J

are strictly increasing. Then F is an M-function.

If F is an M—function and if Fx = b has a solution then it is unique. Moreoever,
Ortega and Rheinboldt [18] show that if F' is a continuous, surjective M—function
then for any initial vector the nonlinear Jacobi and Gauss—Seidel processes will
converge to the unique solution. Results for the convergence of block versions of
these iterations exist [20]. This result generalizes the classical result of Varga for
M-matrices. We note that the parallel OSM (3) is a nonlinear block Jacobi iteration.

As an application of this theory we reconsider the two subdomain iteration (2).
The technique generalizes to an arbitrary number of subdomains. The iteration
(2) is well-posed. Existence and uniqueness for a given right hand side is trivial
since the functions are uniformly monotone and tend to £eo as xj» — =£oo. The
two subdomain interface solution would solve the system F = (f1, f2)7 = 0 where
f1(x,y) =Ri(x) = Ra(y) + px— py=0and fo(x,y) = —Ra(y) + R1(x) + py — px = 0.
In [22] Sarker obtains the following result.

Theorem 2. The function F = (f1, f»)T above is a surjective M—function if p >
max{1/c,1/(1—a)}m. Hence, the iteration (2) will converge to the unique solution
of F = 0 for any initial vector. The convergence will be monotone if we start from a
super or sub solution.

Proof. Clearly the function F is continuous. By direct calculation and the bounds on
M we have % = éM(x)—Fp > 0 and %2 = ﬁM(y)—Fp > 0, for all p > 0. Hence
/1 and f; are strictly increasing. Therefore, F' is strictly diagonally increasing. Fur-
thermore, aa—];' =1-M(y)—pand % = LM(x) — p. Hence, if p > {2, 2} then
F is off-diagonally decreasing. A super (sub) solution, a vector (£,) satisfying
F(%,9) > 0(<0), can easily be constructed [22]. Monotone convergence from (%, §)
follows from Theorem 13.5.2 of [18].

To show that F is an M—function, we now consider the functions ¢;(t) =
Z§=1 fi(X +te') where e € R* is the i-th standard basis vector, for i = 1,2. The
functions ¢ (¢) and ¢»(¢) are given by ¢ (t) = fi(x+1¢,y) + fa(x+1,y) = 2R (x +
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1) —2Ry(y) and g»(t) = fi(x,y +1) + fo(x,,y+1) = 2R;(x) — 2Ry(y + ). Hence
% = %M (t) >0and dd% = ﬁM (#) > 0 and we conclude that g; is strictly increas-
ing, for i = 1,2. Hence F is an M-function from Theorem 1. Surjectivity requires a
super and sub solution for Fx = b for a general b, see [22]. The convergence from

any initial vector then follows from Theorem 13.5.9 of [18].

2

g

Numerical solution at each iteation
&

Numerical selution at each iteation

g

10 15 2 %5 n
Iteration n lteration n

o
=
3
&
2
8

Fig. 6 Convergence history of the interface iteration for small and large p values.

In Figure 6 we see monotonic convergence (consistent with the M—function the-
ory) if p is large enough and non-monotonic convergence for small p (consistent
with the Peaceman—Rachford theory).

4.2 A Coarse Correction

The convergence rate of Schwarz methods suffers as the number of subdomains
increases, see the left plot in Figure 7. A coarse correction is able to improve the sit-
uation dramatically by providing a global transfer of solution information. Here we
propose a coarse correction for the (nonlinear) PDE based mesh generation problem
by using a two-grid method with a full approximation scheme (FAS) correction ap-
plied in the computational co-ordinates. This work was completed by Grant in [11]
and will be published in full elsewhere.

FAS [5] provides a solution strategy for nonlinear PDEs. FAS restricts an ap-
proximation (and corresponding residual) of the PDE, obtained on a fine grid, to a
coarse grid. The error in the approximation is found by solving a coarse problem.
This error is then interpolated back to the fine grid and used to update the solution
approximation.

FAS may be combined with a DD approach in a very natural way. We perform
one classical Schwarz iteration to obtain approximate subdomain solutions on a
fine grid. FAS is then applied to update the subdomain solutions before proceeding
with the next Schwarz iteration. As shown in the right plot of Figure 7, the effect
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DDE

Fig. 7 Schwarz convergence results on multidomains and multidomains with a coarse correction.

is dramatic. This promising result for the nonlinear PDE mesh generator suggests
the possibility of a two-grid FAS DD approach for the coupled mesh and physical
PDEs.

5 Conclusions

PDE based mesh generators can be useful for problems which would benefit from
automatically adaptive spatial grids. It is possible to analyze DD approaches for
nonlinear mesh generators which directly give the physical mesh locations. We can
then incorporate DD, within the coupled physical PDE/mesh PDE solution frame-
works in a theoretically sound way.

Acknowledgements I would like to thank my former students Alex Howse, Devin Grant and Abu
Sarker for their assistance and some of the plots included in this paper, and also Felix Kwok for
several discussions related to this work.
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Abstract

Mixed-dimensional partial differential equations arise in several physical applications, wherein parts of
the domain have extreme aspect ratios. In this case, it is often appealing to model these features as
lower-dimensional manifolds embedded into the full domain. Examples are fractured and composite
materials, but also wells (in geological applications), plant roots, or arteries and veins.

In this manuscript, we survey the structure of mixed-dimensional PDEs in the context where the sub-
manifolds are a single dimension lower than the full domain, including the important aspect of
intersecting sub-manifolds, leading to a hierarchy of successively lower-dimensional sub-manifolds. We
are particularly interested in partial differential equations arising from conservation laws. Our aim is to
provide an introduction to such problems, including the mathematical modeling, differential geometry,
and discretization.

1. Introduction

Partial differential equations (PDE) on manifolds are a standard approach to model on high-aspect
geometries. This is familiar in the setting of idealized laboratory experiments, where 1D and 2D
representations are used despite the fact that the physical world is 3D. Similarly, it is common to
consider lower-dimensional models in applications ranging from geophysical applications. Some
overview expositions for various engineering problems can be found in [1, 2, 3].

Throughout this paper we will consider the ambient domain to be 3D, and our concern is when models
on 2D submanifolds are either coupled to the surrounding domain, and/or intersect on 1D and 0D
submanifolds. Such models are common in porous media, where the submanifolds may represent either
fractures (see e.g. [4]) or thin porous strata (see [1]), but also appear in materials [3]. In all these
examples, elliptic differential equations representing physical conservation laws are applicable on all
subdomains, and the domains of different dimensionality are coupled via discrete jump conditions.
These systems form what we will consider as mixed-dimensional elliptic PDEs, and we will limit the
exposition herein to this case.

In order to establish an understanding for the physical setting, we will in section 2 present a short
derivation of the governing equations for fractured porous media, emphasizing the conservation
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structure and modeling assumptions. This derivation will lead to familiar models from literature (see e.g.
[4, 5, 6, 7] and references therein).

We develop a unified treatment of mixed-dimensional differential operators on submanifolds of various
dimensionality, using the setting of exterior calculus, and thus recast the physical problem in the sense
of differential forms. We interpret the various subdomains as an imposed structure on the original
domain, and provide a decomposition of differential forms onto the mixed-dimensional structure. By
introducing a suitable inner product, we show that this mixed-dimensional space is a Hilbert space. On
this decomposition we define a semi-discrete exterior derivative, which leads to a de Rham complex
with the same co-homology structure as the original domain. It is interesting to note that the differential
operators we define were independently considered by Licht who introduced the concept of discrete
distributional differential forms [8]. A co-differential operator can be defined via the inner product, and
it is possible to calculate an explicit expression for the co-differential operator. This allows us to
establish a Helmholtz decomposition on the mixed-dimensional geometry. We also define the mixed-
dimensional extensions of the familiar Sobolev spaces.

Having surveyed the basic ingredients of a mixed-dimensional calculus, we are in a position to discuss
elliptic minimization problems. Indeed, the mixed dimensional minimization problems are well-posed
with unique solutions based on standard arguments, and we also state the corresponding Euler
equations (variational equations). With further regularity assumptions, we also give the strong form of
the minimization problems, corresponding to conservation laws and constitutive laws for mixed-
dimensional problems.

This paper aims to provide a general overview and roadmap for the concepts associated with
hierarchical mixed-dimensional partial differential equations, more complete and detailed analysis will
necessarily due to space be considered in subsequent publications.

2. Fractured porous media as a mixed-dimensional PDE
This section gives the physical rationale for mixed-dimensional PDE. As the section is meant to be
motivational, we will omit technical details whenever convenient. We will return to these details in the
following sections.

f:R* - Q"

v \

Figure 1: Example geometry of two intersecting fractures in 2D, and the logical representation of the
intersection after mapping to a local coordinate system.
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We consider the setting of a domain D € R™. In sections 3 and onwards we will consider arbitrary n,
however in this section we will for simplicity of exposition consider only n = 3. We consider a fractured
media, where we are given explicit knowledge of the fractures, thus we consider the domains Qf as
given, where i € I is an index and d = d (i) represents the dimensionality of the domain. We denote by
i € 1% the subset of indexes in I for which d(i) = d. In particular, intact material lies in domains of

d = 3, while d = 2 represents fracture segments, and d = 1 represents intersections, see Figure 1. For
each domain Q¢ we assign an orientation based on n — d outer normal vectors Vij.

In order to specify the geometry completely, we consider the index sets $; and S; as the d + 1
dimensional and d — 1 dimensional neighbors of a domain i. Thus for d = 2, the set S; contains the
domain(s) Ql3 which are on the positive (and negative) side of Q?. On the other hand, the set S; contains
the lines that form (parts of) the boundary of ;. Additionally, the set of all lower-dimensional neighbors
is defined as @i = [§i,§§i, ] We will define Q% = Ziad in as all subdomains of dimension d, while
similarlty Q = %%_, Q% is the full mixed-dimensional stratification. Note that since the superscript
indicating dimension is redundant when the particular domain is given, we will (depending what offers
more clarity) use Q; = Q? interchangeably.

For steady-state flows in porous media, the fluid satisfies a conservation law, which for intact rock and
an n-dimensional fluid flux vector u takes the form

V-u=¢ on D (2.2)

We wish to express this conservation law with respect to our geometric structure. To this end, let us first
define the mixed-dimensional flux u, which is simply a d-dimensional vector field on each Q?. We write
un= [u?] when we want to talk about specific components of u. We similarly define other mixed-
dimensional variables, such as the source-term f.

Now clearly, for d = n, we recover equation (2.1). Now consider d = n — 1, and a fracture {0, of
variable Lipschitz-continuous aperture (illustrated for d(1) = 1 in figure 2).

——

Figure 2: Example of local geometry for derivation of mixed-dimensional conservation law.

Here the dashed lines indicate a fracture boundary, the solid black line is the lower-dimensional
representation, and the solid gray line indicates the region of integration, w, of length £ and width e(x).
Evaluating the conservation law over w leads to

J.V-uda=f u'vds=f(;b
w ow w
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where v are the external normal vectors. Since our integration area is in the limiting case of £ - 0 a
guadrilateral, we split the last integral into parts where v is constant,

fu-vds=v+'f ullds+v_-f u, ds+f ‘r-uds—f T-uds
dw 0w 0_w Jrw L w

where [l1, ;] € S; is the domain on the “+” and “-” side of (;, respectively, and denote the Left and
Right side of the integration boundary by subindexes. The notation T is the tangential vector to ().
Clearly, letting the length € be infinitesimal, the last two terms satisfy

tTruds— [, T-uds 04w
aa)L
=V91-f T-uds=Vgy -(cuy)

_w

lim fawR
£-0 {

where Vq_ - is the in-plane divergence and
_ 10w
ulzzf T-uds (2.3)

Considering similarly the limits of £ — 0 for the two first terms, we obtain for the positive side

d o\ 1/2
ui(ll) ds = (1 + |_V91(a+(0) ) V- u;il(ll)

dx

lim V+ * f_l f
£-0 P

Combining the above, we thus have

+w

limg_,o {)—1 wa -u da = All + Alz + VQl . (Eul) = [[/1]],' + vﬂl . (Eul) (24)

where A is defined as

1/2
d 2 d(
A, = (1 + |Evﬂl(a+w)| ) vy ul® (2.5)

and (using the analogous definition for 4,,)
[ = = Xies, (2.6)

Note that we have made no approximations in obtaining equation (2.4) — the left-hand side is an exact

expression of conservation. The model approximations appear later when deriving suitable constitutive
laws. Nevertheless, since the fractures have a high aspect ratio by definition, the pre-factor in equation
(2.5) is in practice often approximated by identity, for which (2.5) simplifies to

/1[ VLU (27)

The derivation above (including the definition in equation (2.4)), generalizes in the same way to
intersection lines and intersection points, thus we find that for all d < n it holds that

[€AT; + Vg, - (eiw) = ¢; (2.8)

Here the hat again denotes the next higher-dimensional domains, so that € = ¢;. Since S; = @ fori € I™,
equation (2.8) reduces to (2.1) for d = n, and thus it represents the mixed-dimensional conservation
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law for all Q?. In this more general setting, € denotes the cross-sectional width (2D), area (1D) and
volume (0D) for successively lower-dimensional intersections.

For porous materials, the conservation law (2.1) is typically closed by introducing Darcy’s law as a
modeling assumption, stated in terms of a potential p on the domain D as

u=-Kvp (2.9)

The coefficient K is in general a tensor. Unlike for the conservation law, it is not possible to derive an
exact expression for the mixed-dimensional constitutive law, but by making some (reasonable)
assumptions on the structure of the solution, it is usually accepted that Darcy’s law is inherited for each
subdomain (see extended discussion in [1], but also [9]), i.e.

u; = —K;Vq,pi (2.10)

To close the model, it is also necessary to specify an additional constraint, where the two most common
choices are that either the potential is continuous (see discussion in [10])

Py =p_ (2.11)

or, more generally, that the pressure is discontinuous but related to the normal flux above

Ay = —2R, , PP (2.12)

1
(epn—d

The model equations (2.8-2.12) are typical of those used in practical applications [11]. However, to the
authors’ knowledge, our work is the first time they are explicitly treated as a mixed-dimensional PDE
(see also [12, 13]).

3. Exterior calculus for mixed-dimensional geometries

We retain the same geometry as in the previous section, but continue the exposition in the language of
exterior calculus (for introductions, see [14, 15, 16]). Throughout the section, we will assume that all
functions are sufficiently smooth for the derivatives and traces to be meaningful. We also point out that
similar structures to those discussed in this section have been considered previously by Licht in a
different context [8].

First, we note that the components of the mixed-dimensional flux discussed in section 2 all correspond
tod — 1 forms, u? € Ad_l(Q?), while the components of pressure all correspond to d-forms,

pd € Ad(Q?). This motivates us to define the following mixed-dimensional k-form
24(Q) = [Tig A4 (af) (3.1)
From here on, it is always assumed that £¥ is defined over (), and the argument is suppressed.

Moreover, we note that equation (2.7) is (up to a sign) the trace with respect to the inclusion map of the
submanifold, thus for a mixed-dimensional variable a € £ the jump operator is naturally written as

(da)¥ = (—1)4+k Zjegis(nfl,aiaf“)TrQ? af+t (3.2)
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Here we have exchanged the bracket notation of equation (2.5b), which is common in applications, with
a simpler notation, d, which more clearly emphasizes that this is a (discrete) differential operator, in the
normal direction(s) with respect to the submanifold. We use the notation S(Q?, 6iQ]‘-1+1) to indicate the

relative orientation (positive or negative) of the arguments.

We obtain a mixed-dimensional exterior derivative, which we denote d, by combining the jump operator
with the exterior derivative on the manifold, such that for a € 2%

(®a)? = daf + (da)? (3.3)

This expression is meaningful, since both da?, ((dla)fi € Ak'(n_d)“(ﬂfi), and thus clearly da € gk*1. A
straight-forward calculation shows that d (da)? = —(dda)?, thus for all a

bda = 0 (3.4)

and it can furthermore be shown that if a = 0, and if D is contractible, then there exists b € £~ such
that a = bb. Thus the mixed-dimensional exterior derivative forms a de Rham complex,

c d d d
0-R->2°->81 > .. -8">0 (3.5)
which is exact (for the proof of this, and later assertions, please confer [13]).

Due to the jump terms in the differential operators, the natural inner product for the mixed-dimensional
geometry must take into account the traces on boundaries, and thus takes the form for a,b € 2

(a,8) = Xigs ((a?, bf') + X ezd (Trﬂgm af, Troaw b’ )) (3.6)

Note that A¥ (Q?) = @ whenever k & [0, d], thus many of the terms in (3.6) are void. It is easy to verify
that equation (3.6) indeed defines an inner product, and thus forms the norm on £¥

lall = (a, a)*/? (3.7)

The codifferential *: 8¢ — 2%~ is defined as the dual of the exterior derivative with respect to the
inner product, such that for a € gF

(v*a,b) = (a,0b) + (Trb, Tr*a)yp  forallb € gk~1 (3.8)

It follows from the properties of inner product spaces that the codifferential also forms an exact de
Rham sequence. Thus, when D is contractible, we have the following Helmholtz decomposition: For all
a € £F, there exist a, € 8571 and ay- € 851 such that

a = day + d*ay (3.9)

In view of the uncertainty in the modeling community of the correct constitutive laws for mixed-
dimensional problems (as per the discussion of equation (2.11) and (2.12)), it is of great practical utility
to be able to explicitly calculate the co-differential, since this will have the structure of the constitutive
law. Utilizing equations (3.6) and (3.8), we obtain

(>*b)¢ = d*b? on Qf (3.10)



Proceedings of 24+ International Conference on Domain Decomposition Methods, Svalbard,
Lecture Notes in Computational Science and Engineering

and
Try ot (00 = d"Try ga b + (Tr) (o b = B jcsa(-1D* (0, 0,08) b7~1)  on 90f
(3.11)

We close this section by noting that the differential operators provide the basis for extending Hilbert
spaces to the mixed-dimensional setting. In particular, we are interested in the first order differential
spaces, and therefore the norms of H2* and H*2¥ by

llally = llall + lIball  and  llallz+ = llall + lI>"all (3.12)
from which we obtain the spaces
HE* == {a € ¥ ||lally <o} and H*8*:={a € &¥|llally < 0} (3.13)

We use the convention that a circle above the function space denotes homogeneous boundary
conditions, i.e. H&*: {a € HQ¥ |TraD a=0}and H*8*: {a € H* Q¥ |Tr5D a = 0}. The spaces HZ* and
H*2F can be characterized in terms of product spaces of functions defined on domains Q? and its
boundary components 6]-9?, see e.g. [13, 12].

Then, the Poincaré inequality holds for contractible domains in the mixed-dimensional setting for either
a € HE* N H*¢* ora € HE* n H*gk:

llall < Ca(llvall + [I2*all) (3.14)

4. Mixed-dimensional elliptic PDEs
Based on the extension of the exterior derivative and its dual to the mixed-dimensional setting, we are
now prepared to define the generalization of elliptic PDEs. We start by considering the minimization
problem equivalent to the Hodge Laplacian for a € gk

a = arg infaeéﬁan*ﬂk]g(a’) (4.1)
where we define the functional by
Ja(@') = (Rd*a’,pa") + (R*da’,ba’) — (f, ) (4.2)

The material coefficients & are spatially variable mappings from Ak_(n'd(i))(ﬂf) onto itself, defined
independently for all terms in the inner product (3.6). In particular, with reference to section 2, &
contains all instances of the proportionality constants K appearing in (2.9), (2.10) and (2.12).

For equation (4.1) to be well-posed and have a unique solution, we need (§d*a’,d*a’) + (§*da’, ba’) to
be continuous and coercive, i.e. we need to impose constraints on & and &*. Indeed, by reverting to the
definition of the inner product, we define the ellipticity constant ag as the minimum eigenvalue of K,
and similarly for ag+. We require both these constants to be bounded above zero, such that

(&bd*a’,d*a’) + (§*da’,ba’) = min(ag, ag-) (1 + Co)?|la’||?



Proceedings of 24+ International Conference on Domain Decomposition Methods, Svalbard,
Lecture Notes in Computational Science and Engineering

The minimum of equation (4.1) must satisfy the Euler-Lagrange equations, thus a € Hgk n H*2¥
satisfies

(%d%a,d*a’) + (§*da,da’) = (f,a") foralla’ € HEk n H*gk (4.3)

From the perspective of applications, and mirroring the distinctions between conservation laws and
constitutive laws discussed in Section 2, we will be interested in the mixed formulation of equation (4.3)
obtained by introducing the variable b = &d*a, where b is the generalization of the various fluxes u.
Then we may either consider a constrained minimization problem derived from equation (4.1), or for
the sake of brevity, proceed directly to the Euler-Lagrange formulation: Find (a,b) € H2¥xH2*~* which
satisfy

(87'5,b") — (a,db") = 0 forallb’ € Hgk™? (4.4)
(db,a’) + (R*da,ba’) = (f,a") foralla’ € HE¥ (4.5)

The saddle-point formulation is well-posed subject to Babuska-Aziz inf-sup condition. Due to the
presence of a Helmholtz decomposition, this follows by standard arguments. From equations (4.4) and
(4.5) we deduce the strong form of the Hodge Laplacian on mixed form, corresponding to the equations

b= Kd"a and db + 2" (K*da) = f (4.6)

Of the various formulations, equations (4.4) and (4.5) are particularly appealing from the perspective of
practical computations, as they do not require the coderivative.

An important remark is that the relative simplicity of the well-posedness analysis for the mixed-
dimensional equations relies on the definition of the function spaces and norms. In particular, due to the
definition of H2¥ via the mixed-dimensional differential b, the norm on the function space is inherently
also mixed-dimensional, and cannot simply be decomposed into, say norms on the function spaces
HAk-(=d) (Q?). For this reason, analysis in terms of “local norms” becomes significantly more involved
[17, 18, 11].

5. Finite-dimensional spaces

In order to exploit the mixed-dimensional formulations from the preceding section, and in particular
equations (4.4-4.5) we wish to consider finite-dimensional subspaces of HE¥. These spaces should be
constructed to inherit the de Rham structure of equation (3.5), and with bounded projection operators.
A natural approach is to consider the polynomial finite element spaces as a starting point [15].

From the finite element exterior calculus (FEEC - [15]), we know that on the highest-dimensional
domains Qf, we may choose any of the finite element de Rham sequences, and in particular, we may
consider the standard spaces from applications for a simplicial tessellation 7;" = T(Q}')

PN () and PAN(T) (5.1)

These correspond to the full and reduced polynomial spaces of order r, respectively, in the sense of
[15]. In order to build a finite element de Rham sequence, we recall that (while still commuting with
bounded projection operators) the full polynomial spaces reduce order
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d
PAR(T™) > P AT (5.2)

while the reduced spaces preserve order

d
PoAR(T™) - POARL(TT) (5.3)

Thus, any of these combinations of spaces are acceptable for (A}, and consider therefore the choice as

given, and denoted by A’;l'n and A’,‘;'l’"-

For d < n, we must consider not only the continuous differential operator d, but also the discrete jump
operator d. It is therefore clear that fori.e. d = n — 1, we must consider the traces of the finite element
spaces of higher dimensions. In particular, we require for all pairs of dimensions0 < e <d < n,

Troe A% (T9) € Ay "9 (T) (5.4)

In contrast to the continuous differential order, the discrete differential operator preserves order for
both the full and reduced spaces, since [15]:

Trge PAK(T4) = PARTM= (7€) and  Trge P AK(T94) = pmAk+=e)(T¢) (5.5)

We now define the polynomial subspaces SDrmﬁk € HE¥ as
d a o
(Prek); = P A0 (70) (5:6)

where the multi-indexes r and m have values 2 € P and m¢ € [, —], respectively. When the multi-
indexes are chosen to satisfy both (5.2-5.3) as well as (5.4), we obtain the discrete de Rham complex

d d d
0> Ro PR pMmEl 5 > PME 5 0 (5.7)

Due to the existence of stable projections for all finite element spaces in iPrmEk, the discrete de Rham
sequence can be shown to be exact, thus equations (4.4) and (4.5) have stable approximations.

The discrete spaces for H* 2 must satisfy similar properties. Equations (5.2-5.3) hold in the dual sense,
i.e. we write P AK(T;4) = PIAR(T;%) =% (PAY*(T;), and d* P AR (T;4) € PAF1(T39)
?ﬁ_lAk'l(Tid). Furthermore, the coderivative d* imposes the inverted condition AT(n_e) (T79) c

Trg?-l Ak (7%) on boundaries.

6. Implications in terms of classical calculus

We take a moment to untangle the notation from Sections 3-5 in order to extract insight into modeling
and discretization for the original physical problem.

Our initial task is to express simplest form of the mixed-dimensional Hodge Laplacian in terms of
conventional notation. We limit the discussion to the case where k = n, the function spaces H*2" and
H2"™ ! correspond to H; scalars and H(div) vectors on each dimension d > 1. For d = 0, only the

2n+1 —

scalars are defined. Furthermore, the term da € @, and thus we arrive from (4.6) to the simpler

problem
b = Kd"a and b = (6.1)

9
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In this case, the exterior derivative is the negative divergence plus jumps for each domain, while the
codifferential is the gradient parallel to each domain, and the difference from boundaries perpendicular.
As such, we arrive exactly at the model equations of Section 2, with the second choice of modeling
assumption (2.12).

Turning our attention to the finite element spaces, the lowest order spaces for discretizing (4.4-4.5) are
the reduced spaces obtained by choosing rid = 1and mfi = —, from which we obtain piecewise
constants for a on all domains, while we obtain for b the Nedelec 1* kind (div) — Raviart-Thomas —
continuous Lagrange elements for domains with dimensions d = 3,2,1, respectively — all of the lowest
order [12] (this method will be referred to as “Mixed Reduced” in the next section). Interestingly, if we
choose Nedelec 2™ kind (div) elements of lowest order for d = 3, equations (5.2) and (5.5) implies that
we should increase the order in the lower-dimensional domains, obtaining dG elements of ordern — d
for pressure, with BDM (2nd order) — continuous Lagrange (3rcl order) for fluxes in domains with d = 2,1.
This is a new method resulting from the analysis herein. We refer to this method as “Mixed Full”.

The mixed finite element discretization has the advantage of a strong conservation principle, and may
be hybridized to obtain a cheaper numerical scheme (see [12] for a direct approach in this context, but
also [6, 5] for direct constructions in the finite volume setting). Alternatively, we consider discretizing
the Euler-variation of the unconstrained minimization problem, equations (4.3). The natural finite
element spaces are ?rm’*i’,", with rid = 1 and m does come into play, corresponding to 1*-order
continuous Lagrange elements in all dimensions. From an engineering perspective, a similar formulation
has been described in [19], we refer to this method as “Primal” in the next section.

7. Computational example
In order to illustrate the concepts discussed in the preceding sections, we will continue to consider
k = n, and thus fractured porous media as a computational example, using the three numerical
methods obtained using the lowest-order elements of the families described in the previous section.

The example consists of the unit square with two fractures crossing through the domain, intersecting at
aright angle, as illustrated in figures 3. We impose unit permeability in the surroundings, set the normal
and tangential permeability of the fractures to 100 and assume the apertures of both fractures as

€ = 1073. The boundary conditions are chosen as zero pressure at the bottom and no-flux conditions on
the sides. Moreover, a boundary pressure of one is imposed on the fracture crossing the top boundary.
All computations were performed with the use of FEniCS [21].

10
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Figure 3: (Left) Domain of computation and associated boundary conditions. The pressure boundary

condition is only imposed on the fracture pressure. (Right) Example of calculated solution (pressure).

The results show that all three methods are stable and convergent (Table 1). The relative errors and L?-

convergence rates after four consecutive refinements (identified by the characteristic grid size h) are

given in the following table. Here, we compare the results to a fine-scale solution, obtained after a fifth

refinement. In this example, all grids are matching.

Primal Mixed Reduced Mixed Full
Domain | Grid Pressure Pressure Flux Pressure Flux
size
h Error Rate Error Rate Error Rate Error Rate Error Rate
274 2.66e-03 1.53 2.21e-03 1.52 2.89e-04 1.61
QO 275 8.45e-04 1.65 7.18e-04 1.62 N/A N/A | 8.99e-05 1.69 N/A N/A
276 2.15e-04 1.97 1.87e-04 1.94 2.26e-05 1.99
274 2.54e-03 1.46 1.89e-02 1.01 6.32e-03 1.22 3.01e-04 1.71 1.84e-03 1.28
ok 275 9.57e-04 1.41 9.22e-03 1.04 | 2.49e-03 1.34 | 8.99e-05 1.74 7.44e-04 1.30
276 3.23e-04 1.57 | 4.12e-03 1.16 | 7.82e-04 1.67 | 2.37e-05 1.92 2.61e-04 1.51
274 4.25e-03 1.53 1.89e-02 1.02 8.21e-02 0.74 1.86e-02 1.01 3.16e-02 0.75
0% 275 1.36e-03 1.64 | 9.17e-03 1.05 | 4.75e-02 0.79 | 9.11e-03 1.03 1.87e-02 0.75
276 3.60e-04 1.92 | 4.08e-03 1.17 | 2.47e-02 0.94 | 4.07e-03 1.16 1.04e-02 0.86

Table 1: Convergence rates for the three FE and MFEM discussed for the fracture problem in Section 6.

With reference to Figure 3, the domain Q0 is the intersection point, Q! represents the four fracture

segments, while Q? is the remaining ambient geometry.

Each method captures the intersection pressure well, with second order convergence over all. In the

surroundings, the pressure convergence with second order for the primal formulation and first order for
both mixed formulations, as expected. The Mixed Full method has higher-order elements in the fracture,

and this is reflected in higher convergence rates for both pressure and flux.

11
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Balancing Domain Decomposition by
Constraints algorithms for curl-conforming
spaces of arbitrary order

Stefano Zampini, Panayot Vassilevski, Veselin Dobrev and Tzanio Kolev

Abstract We construct Balancing Domain Decomposition by Constraints methods
for the linear systems arising from arbitrary order, finite element discretizations
of the H(curl) model problem in three-dimensions. Numerical results confirm that
the proposed algorithm is quasi-optimal in the coarse-to-fine mesh ratio, and poly-
logarithmic in the polynomial order of the curl-conforming discretization space.
Additional numerical experiments, including higher-order geometries, upscaled fi-
nite elements, and adaptive coarse spaces, prove the robustness of our algorithm. A
scalable three-level extension is presented, and it is validated with large scale exper-
iments using up to 16384 subdomains and almost a billion of degrees of freedom.

1 Introduction

We construct Balancing Domain Decomposition by Constraints (BDDC) methods
[8] for the linear systems arising from three-dimensional, arbitrary order finite ele-
ment discretizations of the H(curl) bilinear form

/anu~va+Bu~vdx, o>0,8>0. (1)
Q
The proposed algorithm is quasi-optimal in the coarse-to-fine mesh ratio, and poly-

logarithmic in the polynomial order of the finite element discretization space, which
is confirmed by the numerical results in Section 3. Our results will be equally valid
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for the Finite Element Tearing and Interconnecting Dual-Primal (FETI-DP) method
[12], due to the well known duality between BDDC and FETI-DP [25].

The bilinear form (1) originates from implicit time-stepping schemes of the
quasi-static approximation of the Maxwell’s equations in the time domain [30].
The coefficient & is the reciprocal of the magnetic permeability, assumed con-
stant, whereas f3 is proportional to the conductivity of the medium; positive definite
anisotropic tensor conductivities can be handled as well. We only present results
for essential boundary conditions, but the generalization of the algorithms to natu-
ral boundary conditions is straightforward. Magnetostatic problems with 8 = 0 are
not covered in the present work, and they can be the subject of future research. The
same bilinear form appears in block preconditioning techniques for the frequency
domain case [13], mixed form of Brinkman (Darcy-Stokes) [39], and in incompress-
ible magneto-hydrodynamics [24].

The operator V X is the curl operator, defined, e.g., in [4]; the vector fields belong
to H(curl), the Sobolev space of square-integrable vector fields having a square-
integrable curl. The space H (curl) is often discretized using Nédélec elements [26];
those of lowest order use polynomials with continuous tangential components along
the edges of the elements. While most existing finite element codes for electromag-
netics use lowest order elements, those of higher order have shown to require fewer
degrees of freedom (dofs) for a fixed accuracy [31, 13].

The design of solvers for edge-element approximations of (1) poses significant
difficulties, since the kernel of the curl operator is non-trivial. An even greater
challenge for domain decomposition solvers consists in finding logarithmically sta-
ble decompositions in three dimensions, due to the strong coupling that exists be-
tween the dofs located on the subdomain edges and those lying on the subdomain
faces. Among non-overlapping methods, it is worth citing the wirebasket algorithms
[9, 18, 19], Neumann-Neumann [32], and one-level FETI [36, 28]. Overlapping
Schwarz methods have also been studied [33, 6].

The edge-element approximation of (1) has also received a lot of attention by the
multigrid community; Algebraic Multigrid (AMG) methods have been proposed in
[29], [5], and [17]. For geometric multigrid, see [14]. Robust and efficient multigrid
solvers can be obtained combining AMG and auxiliary space techniques, that re-
quire some extra information on the mesh connectivity and on the dofs [15, 16, 22].

In this work, we follow the approach proposed by Toselli for three-dimensional
FETI-DP with the lowest order Nédélec elements [34], where a stable decomposi-
tion is obtained by using a change of basis for the dofs located on the subdomain
edges. The same approach has been pursued recently by Dohrmann and Widlund
[11], who were able to improve Toselli’s results, and obtain sharp and quasi-optimal
condition number bounds (in the lowest order case) by using the deluxe variant
of BDDC [10]. This is critical for obtaining iteration counts and condition num-
ber estimates independent of the jumps of & and 3 aligned with the subdomain
interface. Finally, it has to be noted that BDDC deluxe algorithms for high-order
Nédélec elements in two dimensions, and for the lowest order Nédélec elements in
three dimensions have been already presented by the first author in [40, 42].



BDDC for curl-conforming spaces 3

In Section 2, we complement the results in [34, 11] by proposing an algorithm
for the change of basis that does not make any assumption on the mesh, the asso-
ciated discretization space, and the domain decomposition. Inspired by the success
of the auxiliary space technique [15], we construct the change of basis by using the
so-called discrete gradient, a linear operator that maps gradients of scalar functions
to their representation in the curl-conforming discretization space. Numerical ex-
periments, provided in Section 3, confirm that the robustness of our approach is not
confined to the more standard Nédélec elements, but it also extends to the case of
elements with curved boundaries, and to upscaled H(curl) spaces constructed by
preserving the de Rham sequence on agglomerations of fine scale elements. Due to
page restrictions, we refer the interested reader to [23] for a thorough description of
these kind of elements.

2 Design of the algorithm

2.1 Domain decomposition and discrete spaces

We follow the framework of iterative substructuring [37, Chapters 4-6], and we
decompose the domain £2 into N non-overlapping open Lipschitz subdomains €2;,

Q= ﬁi, I .= U&Q]‘ﬂaﬂh

1 i#]

=

1

with I the interface between the subdomains. We further assume that €2 and each €;
are simply connected (does not contain any holes). We denote by V() and S, (Q)
the curl- and H'- conforming finite element spaces of polynomial order p, respec-
tively, together with their subdomain counterparts VE;) :=V,,(£;) and S;l') =8,().
We denote by W the global finite element space in which we seek the solution of
problems coming from the bilinear form (1), and by W) the corresponding sub-
domain spaces. We note that V;, coincides with W when using Nédélec elements;
however, our algorithm covers also the case V;, C W, as it is the case of upscaled
finite elements that preserve the de Rham sequence [23], or of three-level extensions
of the BDDC algorithm for (1) (see Section 2.4).

The success of the algorithm depends on the analysis of the interface, that leads
to the detection of equivalence classes such as the subdomain faces, i.e. sets of con-
nected dofs shared by the same two subdomains, and the subdomain edges, i.e. sets
of connected dofs shared by 3 or more subdomains. We assume that a subdivision of
I' in face and edge disjoint subsets has been found; moreover, we assume that each
subdomain edge has exactly two endpoints, and none of the edge endpoints lie in the
interior of another subdomain edge. As noted in [11, Section 5], this guarantees that
the change of basis (defined in the next section) leads to a new well-posed problem.
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2.2 BDDC method

The recipe for the construction of a BDDC preconditioner consists in the design of
a partially continuous interface space Wp, the direct sum of a continuous primal
space Wyy and a discontinuous dual space Wy, and in the choice of an averaging
operator Ep for the partially continuous dofs, which drives the analysis and the
design of robust primal spaces [25].

Following Toselli [34], we characterize the primal space Wy by using two primal
constraints per subdomain edge E as given by

S(),E(W) = |f1\fE w-tpds, wevVy 2)

Sl,E(W) = ‘%'IESW-Z‘E ds, wevy, 3)

where tE\e :=t,, with t, the vector oriented in the direction of a fine mesh edge e
belonging to E. For implementation details of the primal space, see Remark 3.

2.3 Change of basis

As in [34, 11], we consider a change of basis for the dofs of V;, that are located on
each subdomain edge E, and we split a finite element function w into a constant
component D and gradient components V¢, associated with the nodal dofs of S,
lying in the interior of the edge, i.e.

ng—1
w|g = s0e(w)Pg + Z wie(W)Voir +wee,
=1

with ng the number of V;, dofs on E, and wg, the finite element function (if any)
identified by the dofs of W that lie on E and are not in Vy,.

The change of basis in BDDC methods is performed by projection as T7AT,
where the columns of T represents the new basis in terms of the old dofs [21], and
A results from the discretization of the bilinear form (1). The structure of T for
three-dimensional curl-conforming spaces is as follows [34, 11, 40, 42]

Ir0 0 ... O
0 Ir T[:E1 TFEn
7-100Tee 0 0

00 0 . 0
00 0 0 Tgp,

where Ic and Ir are identity matrices of appropriate sizes. Here, F' denotes the set
of dofs of V;, that belong to the subdomain faces, and C denotes all the remaining
dofs of W that do not belong to F or to any of the subdomain edge dofs of Vj,.
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Differently from a conventional change of basis in BDDC, the one used for curl-
conforming spaces is not local to the subdomain edges, as it also involves, through
the sparse off-diagonal blocks Trg;, the dofs of F that are located on the fine mesh
edges sharing a mesh vertex with any of the E;.

In our code, we use TT AT as iteration matrix; however, in order to preserve a one-
to-one correspondence between old and new subdomain dofs, we construct the pre-
conditioner using the subdomain matrices AW .= ROTTROTAOROTROT | where
Al is the discretization matrix on W(i>, and RY is the usual restriction operator
from W to W), Note that TTAT = YN | (TTROT)AO(ROT) £ yN | ROTAWORE),

The functions @ and V¢,r are explicitly constructed in [34, 11]; however, the
procedures used therein possess strong limitations, as they need to access the under-
lying mesh and to understand how the edge dofs are related with the orientation of
the fine mesh edges; moreover, they are limited to the lowest order Nédélec space
only. In this work, we propose a construction of the change of basis by using the
information contained in the discrete gradient operator G, the matrix representation
of the mapping ¢ € S, — V¢ € V, that is also used by the auxiliary space method,
see [15] and [22, Section 4]. We note that, when using Nédélec elements, there are
p dofs associated to each fine mesh edge, and that the number of nonzeros per row
of G is p+ 1, with p the polynomial order of the finite element space used for Sj,.
For upscaled elements, the number p, of dofs of V, associated to each fine mesh
edge e may vary from one fine mesh edge to another, but the number of nonzeros of
the corresponding rows of G is always p, + 1.

For each subdomain edge E, we construct the corresponding column block of T
as follows. We first extract the matrix G 6> Where E is the set of dofs of Sj, that is
associated with those basis functions being nonzero on the nodes in the interior of
E; note that Gz has full-column rank, and that ng = ng + 1. We then compute the
representation of the subdomain edge constant function @ in Vj, as the eigenvector
corresponding to the nonzero eigenvalue of the orthogonal complement of G, i.e.
I— GEE(GggGEE)_IG,{;E' The dofs defining V¢ ;g are simply given by the columns

of G that correspond to E. The change of basis block relative to E is
Tre — 0 GE"E°
TeE ’ ¢E GEI;“ ’

with E UE€ the set of row indices corresponding to the nonzero values in the E
columns.

Remark 1. The construction of our change of basis just needs sub-matrix extraction
operations and the computation of the orthogonal complement of G, which can
be obtained by doing a singular value decomposition of the same matrix, of size
ng X ng: note that ng is usually very small, on the order of ten, and we can thus
efficiently use algorithms for dense matrix storages. After having changed the basis,
the sparsity pattern of the local matrices is not spoiled, and optimal nested dissection
orderings for the direct solves of the subdomain problems can be found.



6 Stefano Zampini, Panayot Vassilevski, Veselin Dobrev and Tzanio Kolev

Remark 2. For the lowest order Nédélec elements, G has two nonzeros per row;
the values are +1 or —1 depending on the orientation of the element edge. When
hexahedral meshes and box subdomains are considered, our change of basis is the
same as that proposed by Toselli [34].

Remark 3. The constraint given in eq. (2) is obtained by selecting the dofs corre-
sponding to each @ as primal; arithmetic averages for the remaining dofs on the
subdomain edges are used to impose the constraint (3), see also [11, Section 2.2].

Remark 4. Our algorithm does not require the user to input the mesh connectivity.
From G, we can infer the dofs connectivity which will lead to a well-posed change of
basis, since the sparsity pattern of the matrices G’ G and GG carry the information
of a vertex-to-vertex, and an edge-to-edge mesh connectivity graph, respectively.

2.4 Three-level extension of the algorithm

Three-level extensions of the algorithm [38] are crucial for large scale simulations,
as the solution of the coarse problem in BDDC (as with all two-level methods) can
become a bottleneck when many subdomains are considered, see [41, Section 3.6]
and the references therein for additional details. The minimal coarse space presented
in Section 2.2 can be naturally split in two disjoint subsets; the one arising from
the constraints given in eq. (2) resembles a lowest-order Nédélec space defined on
the coarse element (i.e., the subdomain). The rest of the coarse dofs are instead
generated by gradients of scalar functions, and a scalable coarse space can be thus
obtained by considering arithmetic averages defined on the coarse subdomain edges.

We thus propose an approximate coarse discrete gradient to obtain a stable de-
composition of the coarse dofs generated by eq. (2), obtained by projecting the fine
discrete gradient G on the @ functions. The resulting coarse discrete gradient will
have two nonzero entries per row, with entries given by Gg 2 Pr, with JE the in-
dices of the basis functions of Sj, associated with the two endpoints of E. We then
construct the primal space of the coarse problem as outlined in the previous sec-
tions. Numerical results confirm that such an approach provides an optimal coarse
space for the second level of the BDDC operator, and leads to scalable three-level
algorithms in terms of number of iterations. We note that multilevel extensions, with
an arbitrary number of levels, can be obtained by recursion arguments.

3 Numerical results

Here we present numerical experiments that confirm the robustness of our algo-
rithm; we test the quasi-optimality, the dependence on the polynomial order of the
curl-conforming spaces, and the proposed three-levels extension. In addition, we test
the case of elements with curved boundaries. We also provide results for adaptive
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enrichment (see [41] and the references therein) of the minimal coarse space given
by egs. (2) and (3) in the presence of heterogeneous coefficients. As quality met-
rics, we consider the experimental condition number (denoted by k) and the num-
ber of conjugate gradient iterations needed to reduce by eight orders of magnitude
the initial residual norm, starting from zero initial guess and randomly distributed
right-hand side. Unless otherwise stated, the primal space consists of two dofs per
subdomain edge as described in Section 2.2, « = = 1, and Q = [0, 1]3.

All the numerical results have been obtained using the discretization packages
MFEM [1] (for Nédélec elements and high-order geometries) and ParElag [2] (for
upscaled finite elements) developed at Lawrence Livermore National Laboratory,
and by using the BDDC implementation developed by the first author in the PETSc
library [3, 41]. Irregular decompositions of tetrahedral (TET) or hexahedral (HEX)
meshes obtained from the graph partitioner ParMETIS [20] are always considered;
deluxe scaling is always used to accommodate for spurious eigenvalues of the pre-
conditioned operator arising from possibly jagged subdomain interfaces [7].

In Figure 1 we report the results of a quasi-optimality test, performed by consid-
ering successive uniform refinements of a mesh decomposed in 40 subdomains, and
by using Nédélec elements of order p = 1 (lowest-order) and p = 2. The domain
decomposition is kept fixed, in order to fix the value of the maximum subdomain di-
ameter H. The results show a (1+log H /h)? dependence in all the cases considered.

10

20

——TET,
——TET,

To
L
=

——HEX,

°
I
[N

A \\\
iterations
| \\\\

refinements refinements

Fig. 1: Quasi-optimality test. k (left) and number of iterations (right) for successive uniform refine-
ments for Nédélec elements on hexahedra (HEX) and tetrahedra (TET); polynomial orders p = 1
and p =2.

We then fix the mesh and the domain decomposition (i.e. H/h), and we increase
the polynomial order of the discretization spaces. Figure 2 contains results for the
Nédélec elements, going from p = 1 to p = 6; we note that we obtained the same
results when considering statically condensed spaces (relevant when p > 1 for the
HEX and p > 2 for the TET case, data not shown). In the same spirit, Figure 3
contains the results for upscaled curl-conforming elements, obtained by considering
two successive levels of structured aggregation (UP1 and UP2 respectively), and
with polynomial orders ranging from p = 1 to p = 4; results for Nédélec elements
(NED) on the same mesh are given for comparison. In both cases, Nédélec or up-
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scaled elements, our algorithm shows to be robust with the higher degree of the
polynomial space, and it leads to a poly-logarithmic convergence rate. The results
of this test, together with those related with the quasi-optimality, suggest a condition
number bound of the type (1 +log(p*H /h))? for the preconditioned operator.

Fig. 2: Polynomial order test. k¥ and number of iterations as a function of the polynomial order for
Nédélec elements on hexahedra (HEX) and tetrahedra (TET).
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Fig. 3: Polynomial order test. k and number of iterations as a function of the polynomial order
for Nédélec elements (NED), and upscaled curl-conforming elements. UP1 one level of element
aggregation with structured coarsening, UP2 two levels.
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Further numerical evidence for the robustness of our approach is given by the
results shown in Table 1, where condition numbers and number of iterations are
reported by testing against third-order geometries, in combination with Nédélec el-
ements of order p = 1,2. The meshes used to run the tests have been obtained from
2 levels of uniform refinements of those shown in Figure 4, and they are available
with the MFEM source code as escher—p3.mesh and fichera-g3.mesh.
The number of subdomains considered is 40.
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Fig. 4: Third-order meshes used for
the results in Table 1.

Table 1: High-order geometry test. Size of linear systems
(dofs), condition number, (k) and number of iterations (it)
for Nédélec elements of degree 1 and 2 with the meshes
shown in Figure 4.

TET,p=1,TET, p=2

dofs 27K 144K
K 11.8 23.7
it 26 37
HEX,p=1,TET, p=2
dofs 12K 92K
K 5.7 8.4
it 21 26

We next consider the case of heterogeneous coefficients; we fix o = 1, and vary
the distribution of 8 as pictured in Figure 5. For this test, we adaptively enrich the
minimal coarse space by means of the adaptive selection of constraints algorithm
described in [41, 40]; results have been obtained using either tetrahedral or hexahe-
dral meshes, 40 subdomains, and with Nédélec elements of order p =1 and p = 2.
The number of dofs in the tetrahedral case is approximately 200 thousand (K) for
p =1, and 1.2 million (M) for p = 2; in the hexahedral case, the number of dofs
are 330K and 3.5M, respectively. Results are reported in Table 2, together with the
adaptive threshold used (1), and the ratio between the number of generated coarse
dofs and the number of interface dofs (C/I").

Fig. 5: Heterogeneous f distribu-
tion used for testing adaptive coarse
spaces.

2.69e+05

2.018e+05

1.345e+05

6.725e+04

5.432e-05

Table 2: Adaptive coarse spaces. Condition number (k),
number of iterations (it) and coarse-to-fine ratio (C/I") for
different eigenvalue thresholds A.

TET, p= 1 TET, p=2
A - 10 5 25 A - 10 5 25
K |150.2 7.5 4.6 2.2 K (4133 59 43 23
it | 54 15 12 8 it [ 113 15 12 9

C/T'| 0.01 0.050.06 0.09| |C/I"| 0.01 0.02 0.02 0.04
HEX, p =1 HEX, p=2
2] - 10 5 25|[A2] - 10 5 25

K |203.4 5.8 32 2.0 kK |330.8 5.1 3.4 2.0
it [ 62 13 10 7 it | 97 14 11 8
C/I"| 0.02 0.05 0.06 0.09| |C/I"{ 0.01 0.01 0.02 0.04

Without adaptive coarse spaces, the algorithm performs poorly (as expected)
since the jumps in 3 are not aligned with the (irregular) subdomain boundaries;
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on the other hand, the number of iterations and the condition numbers are consis-
tently (and constantly) reduced when considering adaptive coarse spaces associ-
ated with smaller and smaller tolerances A. The ratio of coarse-to-fine dofs remain
bounded for all the tolerance values considered; interestingly, the coarsening pro-
cedure is more effective for p = 2 than for p = 1, as also observed experimentally
with Raviart-Thomas vector fields [27, 43].

We close this section by reporting the results of a weak scalability test. Since we
consider unstructured domain decompositions, we obtain subdomain problems of
approximately the same size by using uniform refinements of an hexahedral mesh;
at each level of refinement, we multiply by eight the number of subdomains used. As
a consequence, we cannot guarantee that the shape of the subdomains remains the
same. The total number of dofs in the test ranges from 186K to 94M with Nédélec el-
ements of degree p = 1, and from 1.5M to 742M for p = 2. In Figure 6, we compare
the results using a standard two-level BDDC algorithm (2L) and a three-level ap-
proach (3L), where the coarse subdomains have been obtained by aggregating 32
fine subdomains using ParMETIS; the condition number of the coarse BDDC pre-
conditioned operator is also provided (k;, left panel, dashed lines). The number of
iterations are scalable up to 16384 subdomains in both cases; condition numbers and
number of iterations are slightly larger for the 3L case, but the algorithm preserves
the convergence properties of the 2L case.

Fig. 6: Weak scalability test. K and number of iterations as a function of the number of subdomains
for two-level (2L) and three-level BDDC (3L). Coarse condition number (k) is also shown.
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4 Conclusions

We have constructed BDDC methods for arbitrary order, finite element discretiza-
tions of the H(curl) model problem. Numerical results have shown that the pro-
posed algorithm leads to a poly-logarithmic condition number bound, with a mild
dependence on the polynomial order of the approximation space, of the type
(1+41og(p*H /h))?. The robustness of our approach has been confirmed for various
cases, including high-order geometries, upscaled curl-conforming finite elements,
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and heterogeneous distributions of the coefficients. A scalable, three-level exten-
sion of the method has also been proposed; large scale parallel experiments using
up to 16384 subdomains and almost a billion of dofs have been provided to validate
the algorithm.
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Restricted additive Schwarz method
for some inequalities perturbed by a
Lipschitz operator

Lori Badea!

1 Introduction

The first restricted additive Schwarz methods have been introduced for alge-
braic linear systems in Cai et al. [1998], Cai and Sarkis [1999] and Frommer
and Szyld [2001]. In Frommer et al. [2002] and Nabben and Szyld [2002] the
restricted variant of the multiplicative Schwarz method is also analyzed. Nu-
merical experiments have proven that these restricted methods, besides the
fact that they sometimes converge faster and also preserve the good proper-
ties of the usual additive methods, they reduce the communication time when
they are implemented on distributed memory computers. In Efstathiou and
Gander [2003], it is explained this fact by showing that even if the restricted
method is defined at the matrix level, it can be interpreted as an iteration
at the continuous level of the given problem. Restricted additive Schwarz
methods for complementarity problems have been introduced in Yang and Li
[2012], Zhang et al. [2015], Xu et al. [2014] and Xu et al. [2011].

In the above papers, the methods are approached by a matricial point of
view. In this paper, we introduce and analyze a restricted additive method
for inequalities perturbed by a Lipschitz operator in the functional frame-
work of the PDEs. Such an approach is not new in the case of the additive
and multiplicative Schwarz methods, including the multilevel and multigrid
methods for inequalities (see Badea [2008b], Badea [2015] and Badea [2008a],
for instance).

In the next section, like in Badea [2008a], we give an existence and unique-
ness result concerning the solution of the inequalities we consider; Also, we
introduce the method as a subspace correction algorithm, prove the con-
vergence and estimate the error in a general framework of a finite dimen-
sional Hilbert space. In Section 3, by introducing the finite element spaces,

Institute of Mathematics of the Romanian Academy and Francophone Center for Mathe-
matics in Bucharest, P.O. Box 1-764, RO-014700 Bucharest, Romania lori.badea@imar.ro



2 Lori Badea

we conclude that both the convergence condition and convergence rate are
independent of the mesh parameters, the number of subdomains and of the
parameters of the domain decomposition, but the convergence condition is
a little more restrictive than the existence and uniqueness condition of the
solution.

In a forthcoming paper, by considering the perturbing operator of a par-
ticular form, we introduce and analyze some restricted additive Schwarz-
Richardson methods for inequalities which do not arise from the minimization
of a functional. Also, we shall compare the convergence of these restricted ad-
ditive methods with the convergence of the corresponding additive methods.

2 Convergence result in a Hilbert space

Let V be finite dimensional real Hilbert space with the basis ¢;, j = 1,...,d,

and let ¢; and Cy be two constants such that, for any v = Z?Zl vijp; €V,
we have

d d
ca i NveslIP < vl1? < Ca 325 [lvjesll? (1)

Also, let Vi,...,V,, be some closed subspaces of V and K C V be a non
empty closed convex set. We consider a Gateaux differentiable functional
F :V — R and assume that there exist two real numbers o, 8 > 0 for which

allo = ul? < (F/(v) = F'(w), v —u) and ||F'(v) = F'(u)l |y < Bllv—ul| (2)

for any u,v € V. Above, we have denoted by F’ the Gateaux derivative of
F'. Following the way in Glowinski et al. [1981], we can prove that for any
u,v € V, we have

(F (), v =)+ 5 o —ull? < F (o)~ F(w) < (F(u), 0 =) + 5ol (3

Also, we consider an operator T' : V' — V' with the property that there exists
v > 0 such that

IT(0) = ()]l < Al — ul] for any u, v € V. ()
By using the above functional F' : V — R, we also introduce the functional
F : V — R defined as F(v) = Z?Zl F(v;p;). Evidently, the derivative 7’ of
Fatu= Z?Zl uj@; in the direction v = 2?21 vjp; is written as (F'(u),v) =
Z?:1<F’(ujgpj),vj<pj) and, in view of (3), we have

(F'(u)yv =)+ § 5, () = uy)es|* < Flo) = Flu)

< (F()o—u)+ 5L [0 — )y 2 ©)
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for any u = 27:1 ujpj, v = Z;-lzl vjp; € V. Evidently, from the convexity
of F we get that F is also a convex functional. Finally, we assume that
if K is not bounded then the functional F is coercive in the sense that
F)/|[v|]| = o0 as ||v|]| = o0, vE V.

Now, we define an operation * : V x V — V by

d 4 )
wxv =0 ujvjp; for any u= Y1 ujp; and v =37 vjp; €V (6)

d

We fix some functions 6; = ijl Oijpj € Vi, i =1,...,m, and assume that
they have the property
0<6;;<land > 6;;=1forany j=1,...,m (7)

i.e., in some sense, they supply a unity decomposition associated with the
subspaces Vi, ..., V,,. Also, we assume that the convex set K has the property

Property 1.va,w€Kand9:Z?:10jtpj e Vwith0<60;<1,j=1,...,d,
then @ v+ (1 —0)*xw e K.

Above and in what follows in this section, Zj:1 ¢; is denoted by 1. Using
(6), we have 1 * v = v for any v € V. Finally, we consider the problem

ue K : (F(u),v—u)—(T(u),v—u) >0, for any v € K. (8)

which is a variational inequality perturbed by the operator T'. Concerning
the existence and the uniqueness of the solution of this problem we have the
following result (see Badea [2008a], for the proof of a similar result).

Proposition 1. If 1Cy < 1, then problem (8) has a unique solution.
Since the functional F is convex and differentiable, problem (8) is equivalent
with the minimization problem

ue K : Flu)— (T(uw),u) < Fv)—(T(u),v), for any v € K. (9)

We write the restricted additive algorithm for the solution of problem (8) as

Algorithm 1 We start the algorithm with an arbitrary u® € K. At iteration
n+ 1, having u™ € K, n > 0, we solve the inequalities: find w?“ eV, u"+
witt € K such that

(F'(u™ 4+ w?“'l),vi — w?“) —{(T(u™),v; — w?+1> >0,

for any v; € Vi, v +v; € K, (10)

fori=1,...,m, and then we update u"T' = u" + EZ’;I 0; * w;"H.
Now we prove

Theorem 1. Let u be the solution of problem (8), and u™, n > 1, be its
approzimations obtained from Algorithm 1. If %Cd < Ymax, where Ymax s
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defined in (27), then Algorithm 1 is convergent for any initial guess u’ € K
and the error estimates

and

Sl —ueslP < 2 (3
—F(w) + {T(w), )]

+1

hold for any n > 1, where constant C is given in (28).

Proof. Using (5), (7) and (10), we get

Fath) = Flu) + (T(u),u— ™)+ § 35 ([ = uy)e;)

< (F/( ) umt =) + (T, 0 — )

< (F (u +wpth) = F a1, 0, ¢ (w—u™) 4+ (1 — 6;) % wP ™t — with)

= ST ), 05 (= ) 4 (1= 03) s w0 4 (T — )
Above, we have used the fact that 0;%(u—u™)+(1—0;)*w** € V; and, in view
of Property 1, u" +0; % (u—u")+(1—60;)xwi ™t = (1-6;)* (u —|—w"+1)+9 *U €
K and therefore, we can replace v; by 6; * (u —u")+ (1 —6;) «w!™ in (10).
Consequently, we have

F) = Flu) = (D), um™ = ) + § S0 10 = u)e]
< T ) = F ), 0,5 0~ — w ) (13)
+ 0 (T () = T("), 0+ (u — ™ = wi'*))
In view of (2) and (7), we have
NP i) Pt 0 (o = ui )
<BY 121j 1035 1((1 = 1) witt =3 1, k#@k]wk] Dl
M (uy —uf ™ — (1= 035w +Zk 1, k;éz‘gkawk] Dl
< B O (L Bl sl + Sy sl )
(s = sl + (= 0 lfs sl + S0 s Ol i)
< B S 05 [ 55 (1= 01wy s
2
R il sl + s = el ] < 26004 22)

m d n m n
Y S 01 = 035) (1= 0 w012+ R o Ol o511
85 S0 I(uy — w52 = 28(1 + 51) dzzzl S 05(1—04)
(1 201]>||w"+1m|2+2ﬁ<1+Mzz"lz, L0i5(1 — 635)
X Ol 12+ B 0 (g — w2
Zz JF (u” +w"+1) 48(1

d 14
S S Gl 2 4 A5 T [y — gy (Y
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for any £; > 0. Also, from (4) and (1), we get

S (T (u) = T(u™), 0 % (u—w* — wi™)) = (T(u) — T(u"),u — u"

S Bk ) = (T(w) = T™),u = wm ) < Al — ] [u—u |
< (- + I o leuw"+1%|\)||u—u"+1||
<G (14 5) Ty 1w — oy + 25 i 110 0 1)
i.e., using (7), we have
ST () = T(um), 0 % (u = " = 1) < 9Ca (1 + 3)

d n n 15
3y~ P S S Oy 2) (09

for any €2 > 0. From (13), (14) and (15), we get

F(rt) = Flu) = (1@, 0 )+ (§ = BF —7Call + 7))
T M = )l <[40+ 55 +Cask ] (16)
e 123 1ezy‘|wn+l ill?

for any €1, €9 > 0.
Now, by taking v; = (1 — 6;) * w?“ in (10), for i =1,...,m, we get

o O [(F/ (] + i) ps), —wiios) = (T(um), —wii ;)] 20 (17)

In view of (7), the convexity of F', (2) and the above equation, we have

Flurth) — Fum) < S0 S0 035 [F((uf + wlst)gy) — Fule;)]

<ZJ Lo Oig [ S lwi P = (F (g +wn+1)<ﬁj)a ”“%)]
= T 0 - “IIW”+1 iIP = (T (™), —wii ;)
—(F’((u +wi 1)@) "“ i) +(T(u™), —wii o]
<Y i O - ||w"+1 |\2 (T(u"), —wis ;)]
Consequently, we have
& Iy Xy Oyl [P < Fum) — Funth) (18)

+<T(u),un+1 un> + <T(un) _ T(u), u7z+1 _ un>

With a proof similar to that of (15), we get

(T(um) = Tlu), un = wm) 9Ca [ X4 1w = ug)ps|?

n+l |12 (19)
1+ 55) X T Ol sl 2]
for any e3 > 0.
Consequently, from (18) and (19), we get
[5 — 2Cul+ o) SIS Ol sl < Fum) - Fart) o

HT (), u™* !t —un) +9Ca S S5 () — wy)p;]2
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for any €3 > 0. Let us write
Cr =95 —9Ca(1+ ﬁ) (21)

For values of 7, @ and e3 such that C; > 0, from (16) and (20), we have

Fmt) = Flu) = (T(u),u"t =) + Co 35 (]t = uy)py 2

< O [Flumy = Fm) + (T(u), u+t — )] (22)
where R
C =& (4801 + 55) +1Cazk) (23)
and
Co=§ —B% —7Ca(l + %) —1Ca%C (24)

In view of (22), assuming that 02 > 0, we easily get (11). Estimation (12)
follows from (11) and (3) and (8). Indeed, we have

F(u") = Flw) = (T(w).u" —u) =0 Fulg;) — S0 Fluje;)
—(T(w),u™ —u) > Y5 (F'(ujp;), (ull — u;)e;)

+e 0 1\|< — )5l = (T, u" =) = (F'(w), u" — u)

—(T(w),u™ —u) + § 37 (Ul —uy)esl? > S S0 1w — uy)e; |2

Using (23), (24) and (21), condition Co > 0 can be written as Co = A —

(25)

e
ABB—5(e1+42) — G4 (ea+ 2) > 0 with A= § —7Cyand B = A”fg;zl
€3
The maximum value of Cy is obtained for
6122% 622632% (26)
Consequently, for these values, we should have
3
oo = 35 [ (3~ 29)(3 —22) — 2260(} 1 2] 5 0, or
Cyx L =1
da \/16 B2 1402 41448 43 max (27)

By a simple calculus, we see that if (27) holds, then condition C; > 0 is
satisfied for the value of €3 in (26). Finally, by replacing €1, €2 and €3 in (23)
with their values in (26), we get

1,28 6262 +1 26 6Umax + 1

C = it - 28
a 7Ca (1_2ﬂ) = a Ymax (1 — 2U9max) (28)

e

It should be noted that the convergence condition and the convergence
rate are independent of the number m of subspaces.
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3 Restricted additive Schwarz method in a finite
element space

Let £2 be an open bounded domain in R, N = 1,2 or 3, and we consider
a simplicial regular mesh partition 7,. We assume that domain {2 is decom-
posed in m subdomains, {2 = U:"Zl £2;, and that 7 supplies a mesh partition
for each subdomain §2;, « = 1,...,m. We associate to the mesh partition
T the piecewise linear finite element space Vj, C H}(£2) and to the domain
decomposition the subspaces V;\ C H}(2;). We assume that the convex set
K}, C Vj has the following

Property 2. M v,w € Kp, and if 6 € V},, 0 <0 < 1, then L,(fv+ (1 — O)w) €
K.

Above and also in the following, we denote by Lj the P;-Lagrangian interpo-

lation operator which uses the function values at the nodes of the mesh 7.

It is easy to see that the convex sets of two-obstacle type have Property 2.
Now, we estimate Cy in (1). Given a triangle 7 € Tp, let J, = {1 < j <

d:7 C supp ¢;}. Then, for a v = ijl vjp; € V4, and using the norm of

H'(£2) we have

o2 = 52, 1ol 2 = 52, (Sjes, viei Syes, vies) <

-
S Vel e, gsll < S0 1 s ugesll? < Cadoiny 3, Hlujesl

= Ca 5, lloje; 12

where we have denoted Cy = max ¢, |J-|. Since T}, are simplicial meshes,
then max, |J;| is independent of the mesh parameters when h — 0. Therefore,
we can consider that Cy is independent of the domain or mesh parameters.

Finally, it is evident that = in (6) can be written as u x v = Ly (uv) for
any u, v € V. Moreover, if {61,...,0,,} C V} is a unity partition associ-
ated with the domain decomposition, then (7) holds for any v € V},. Besides
that, in view of Property 2 of the convex set K, this convex set also has
Property 1. In the matricial description of the method, some restriction op-
erators, RY, ..., RO are used instead of our unity partition {61,...,0,,}. If
we associate to a v = Z?:1
associated with R?(vy,...,vq). In general, these restriction operators supply
a minimum overlap i.e., with our notations, the components 6;; of the func-
tions 0; = Z;n:o 0;;p; satisfy either 6;; = 1 or §;; = 0. A PDEs definition of
the method using a unity partition associated to the domain decomposition
and which is very close to that introduced by us is given in Dolean et al.
[2015].

From (27), (28) and the above comments we can conclude that the con-
vergence condition and convergence rate of Algorithm 1 are independent of
the mesh parameters and of both the number of subdomains and the param-
eters of the domain decomposition, but the convergence condition is more
restrictive than the existence and uniqueness condition of the solution given
in Proposition 1.

vip; € Vi the vector (v1,...,vq) then ; x v is
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Does SHEM for Additive Schwarz
work better than predicted by its
condition number estimate ?

Petter E. Bjgrstad?, Martin J. Gander®, Atle Loneland?, and Talal
Rahman?

1 Introduction and Model Problem

The SHEM (Spectral Harmonically Enriched Multiscale) coarse space is a
new coarse space for arbitrary overlapping or non-overlapping domain de-
composition methods. In contrast to recent new coarse spaces like GenEO
[13] or the one in [12] that improve certain Rayleigh quotients in the con-
vergence analysis of the underlying domain decomposition method, SHEM is
based on understanding the stationary iterates of the domain decomposition
method itself (see [6] for details), and can thus be constructed and used also
for domain decomposition methods which do not (yet) have such a conver-
gence analysis, like for example Restricted Additive Schwarz (RAS) [7], or
optimized Schwarz [4]. SHEM is based on the approximation of an optimal
coarse space which was discovered in [3], and further studied in [5, 4, 7], see
[6] for a general introduction, and also [9] for the specific case of Additive
Schwarz (AS). SHEM can use spectral information, as its name indicates,
but can also be constructed avoiding eigenvalue problems, for examples, see
[8]. If a convergence analysis for the domain decomposition method is avail-
able, SHEM can improve the corresponding convergence estimate, see [8] for
a condition number estimate when SHEM is used with AS. We are interested
here to test numerically if in this case

1. the hypothesis of small overlap (one or two mesh sizes) in the proof in [9]
is necessary for the condition number estimate to hold in practice;

2. the quadratic growth in the factor H/h in the condition number estimate
from [9] is really present when the method is used numerically.
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Martin.Gander@unige.ch - Department of Informatics, University of Bergen, 5020
Bergen, Norway Atle.Loneland@ii.uib.no - Department of Computing, Mathematics
and Physics, Western Norway University of Applied Sciences, 5063 Bergen, Norway
Talal.Rahman@hvl.no
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We consider as our model problem the following variational formulation of a
second order elliptic boundary value problem with Dirichlet boundary con-
ditions: find u € H{(£2) such that

a(u,v) = /_Qa(x)Vu -Vudr = /Q fvdx Vv e Hy(92), (1)

where §2 is a bounded convex domain in R?, f € L*(£2) and o € L>(£2) such
that a > g for some positive constant . Discretizing this problem using P1
finite elements from the finite element space Vj, with associated mesh Ty, (£2)
leads to the linear system

Au="f. (2)

Let {2 be partitioned into non—overlapplng open, connected Lipschitz poly-
topes {2; :i =1,..., N} such that 2 = UZ | £2;, where each (2; is assumed
to consist of elementb from T, (£2). We assume that this partitioning is shape-
regular. By extending each subdomain (2; with a distance § in each direction

we create a further decomposition of §2 into overlapping subdomains {§2/}2V ;.

As usual, we assume that each point x € 2 is contained in at most Ny sub-
domains (finite covering). The layer of elements in 2; touching the boundary
052; is denoted by 2! and we assume that the triangles corresponding to this

layer are shape regular with minimum diameter h; :== min X hx, where hg
KEﬂL(‘Qi’)

is the diameter of the triangle K. The interfaces between two subdomains,
2; and §2;, are defined as Tl-j = {2; N ﬁj. The sets of vertices of elements
in 7,(f2) (nodal points) belonging to {2, 2;, 012, 0§2; and I;; are denoted
by 21, {2in, 082, 082, and I;,. With each interface we define the space of
finite element functions restricted to I';; and zero on 81;; as V2(I5;).

We define the restriction of the bilinear form a(-,-) to an interface Ij;
shared by two subdomains as

ary; (u,v) == (amj (x)DTu’DTU)LQ(Fij)’

where ar,, (7) = l(lZm a(y) and D, denotes the tangent derivative with
y i —T

respect to I5;. In order to obtain continuous basis functions across subdomain
interfaces, we define a second bilinear form on each interface I75;,

ar;; (u,v) := (a; (x)DTu,DTv)LQ(FU) ,
where @;; is taken as the maximum of or,; and o|r,,.

Given a partition of unity {x;}¥, subordlnate to the overlapping decom-
position defined above and corresponding restriction matrices R;, as well as
a suitable coarse space V;y with restriction operator Ry, the two-level additive
Schwarz method may be defined for i =0,... N as
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N
M,Xé,z = Z RiTA;lRZ- where A; := RiARiT. (3)
i=0

Classically, coarse spaces for Additive Schwarz methods consist of finite ele-
ments on a coarser triangulation Ty of 2. This type of choice for the coarse
space, however, is not robust with respect to large variations in the coefficient
.

2 The SHEM Coarse Space

SHEM is based on enriching a particular underlying coarse space, which in
the case of high contrast problems is the multiscale finite element coarse
space, see [1, 10]. We use the variant that generates the multiscale elements
by solving lower dimensional problems along the edges, and then extend-
ing the result harmonically into the interior of the element. In the case of
Laplace’s equation on a rectangular domain decomposition, this underlying
coarse space would just be Q1 finite elements on the subdomains, see [5]. Note
that SHEM is also interesting in this case, since it systematically improves
the overall convergence of the underlying domain decomposition method in
an optimized way, see [9]. We choose here for SHEM a harmonic enrichment
based on solutions of local eigenvalue problems along the interfaces between
subdomains':

Definition 1 (Generalized Interface Eigenvalue Problem). For each
interface I5;, we define the generalized eigenvalue problem: find ¢ and A,
such that

C_LFij (1/’70) = )\bpij (1[},1}) Vo € V}(L)(FZJ)v (4)
where br,, (¥, v) :=h; ' Y Betpvp and B = Y ak.
k€l jn KeTn(02)
kedof (K)

We will test the following two types of SHEM coarse spaces:

e SHEM,,, where m is an integer: here we choose the m eigenfunctions
associated with the smallest m eigenvalues of (4), and extend each of them
harmonically into the two subdomains {2; and {2; adjacent to the interface
I';; with zero Dirichlet boundary conditions on the remaining part of the
subdomain boundaries. These functions are then added to the underlying
multiscale coarse space to form SHEM,,.

e SHEM,, where 7 is a given tolerance: here we choose adaptively on each in-
terface I; to include all eigenfunctions associates with eigenvalues smaller

L Any other Sturm Liuville problem could be used as well to get a different variant of
SHEM, for example more expensive Schur complements corresponding to the Dirichlet to
Neumann maps [11], or one could construct even cheaper interface basis functions without
eigenvalue problem, see [8].
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than 7, extend them harmonically like above and add them to the under-
lying multiscale coarse space to form SHEM.

Theorem 1 (Condition Number Estimate [8]). If the overlap is one or
two mesh sizes, then the condition number of the two level Schwarz operator

(8) with the SHEM,,, coarse space can be bounded by

R(My§,A) = CF(No + 1), (5)

where CF ~ (1 + /\"}H) and A1 = min rféigoi A1+

The restriction on the overlap size is necessary in the proof based on the
abstract Schwarz framework. The convergence estimate in Theorem 1 also
indicates a quadratic dependence of the condition number on the mesh ratio
H/h, even for the case without enrichment, because the inverse of the smallest
eigenvalues of (4) have a quadratic dependence on the ratio H/h. In the case
of Laplace’s equation and without enrichment, such that our coarse space
is just the normal Q1 coarse space, standard domain decomposition theory
says that the condition number of additive Schwarz should depend linearly
on the mesh ratio H/h. We investigate now numerically if these restrictions
are really also properties of SHEM,,,, or just artefacts in the analysis.

3 Numerical Investigation of the SHEM coarse space

We solve problem (1) with f = 1 on a unit square domain §2 = (0, 1)?, and the
coefficient () represents various (possibly discontinuous) distributions. We
use AS with SHEM,,, as a preconditioner for the conjugate gradient method,
and stop the iteration when the [l norm of the residual is reduced by a factor
of 107°. If not stated otherwise, the coefficient a(z) is equal to 1 for all the
numerical examples, except in the areas marked with red where the value of
a(z) is equal to &. All the experiments were carried out using Matlab 9.0 on
a serial workstation. For the interface eigenvalue problems, we have in our
implementation exploited the fact that we are able to extract exactly the 1D
stiffness and mass matrix corresponding to the bilinear forms in Definition 1
algebraically from the global problem.

3.1 Is small overlap necessary for SHEM?

We start by studying the dependence on the overlap for the contrast func-
tion a(z) shown in Figure 1. For the case of overlap 6 = 2h and § = 8h,
we show the iteration counts and condition number estimates in Table 1 for
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Fig. 1 Distribution of « for a geometry with h =
red are where o has a large value &.

H = 16h. The regions marked with

1
128"

the classical multiscale coarse space (MS), SHEM,,, and the adaptive variant
SHEM,, _g._3. We see that even though the theory only addressed small over-
lap, SHEM,,, works very well also with larger overlap, and overlap improves
the performance like usual. We even see that independence of the contrast
arrives for the large overlap already with two enrichment functions instead of
three. This is because the middle of the three channels crossing the interfaces
in Figure 1 is shorter, and for the large overlap case included in the overlap,
and thus not a convergence problem any more for the underlying AS; there
are therefore only two channels left the coarse space has to treat, see [6] pre-
sented at this conference. In the current adaptive variant SHEM, _g._3 it is
not clear how to take into account the overlap, and thus the same number of

MS SHEM; SHEM> SHEM3 SHEM, |(|SHEM;—gc—3

dim. 49 161 273 385 497

& #it. (k) #it. (k) #it. (k) #it. (k) #it. (k) #it. (k)  dim.
100 21 (1.29¢1) 16 (7.45€0) 15 (5.99e0) 13 (5.19¢0) 13 (5.15e0)]] 21 (1.29¢l) 49
102 122 (3.74e2) 70 (1.17e2) 47 (6.70el) 19 (6.77¢0) 16 (5.66¢0) (1.10e1) 233
10% 367 (3.64e4) 248 (1.10ed) 187 (6.22¢3) 19 (6.78¢0) 17 (5.73¢0) (1.09¢1) 233
106 610 (3.64e6) 423 (1.10e6) 290 (6.22¢5) 19 (6.78¢0) 17 (5.73¢0) (1.09¢1) 233
100 16 (5.57¢0) 15 (4,88¢0) 15 (4.82¢0) 15 (4.94e0) 15 (4.95¢0)|| 16 (5.47¢0) 49
102 47 (4.08¢1) 28 (1.53el) 19 (5.58¢0) 18 (5.02¢0) 18 (4.99¢0)|| 21 (6.26e0) 233
101 145 (3.48¢3) 55 (1.08e3) 20 (6.03¢0) 18 (5.06e0) 18 (4.99¢0)|| 21 (6.55¢0) 233
106 241 (3.48¢5) 78 (1.08¢5) 20 (6.03¢0) 18 (5.06¢0) 18 (4.99¢0)|| 21 (6.56e0) 233

Table 1 Top half: overlap § = 2h. Bottom half: overlap § = 8h. Iteration count and con-
dition number estimate for the channel distribution in Figure 1 for the classical multiscale
coarse space, SHEM,,, m = 1,2,3,4 and SHEM;—_ge_3 for h = = 16h. Here 'dim’
denotes the dimension of the coarse space.

128’
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Fig. 2 Distribution of a for a geometry with h = %, H = 16h. The regions marked with
red are where « has a large value &.

enrichment functions was chosen. Larger overlap can however also be taken
into account by a different construction of SHEM for AS, see [9].

We next perform the same test also on the irregular high contrast structure
shown in Figure 2. The corresponding results in Table 2 show that also in
this case SHEM works very well with larger overlap, and that difficulties can
be either remedied by increasing the overlap, or enriching the coarse space:
SHEM with one enrichment function is enough to get robust convergence with
large overlap, but with small overlap, SHEM needs 2-3 enrichment functions.

MS SHEM SHEM, SHEM3 SHEM4 [(|SHEM;—gec—3

dim. 49 161 273 385 497
& #it. (k) #it. (k) #it. (k) #it. (k)  #it. (k) #it. (k)  dim.

109 21 (1.29¢l) 16 (7.45¢0) 15 (5.99¢0) 13 (5.19¢0) 13 (5.15e0)|[ 21 (1.29¢1) 49

102 72 (1.09¢2) 53 (6.491) 27 (1.52el) 22 (9.47¢0) 20 (6.45¢0)|| 36 (2.14el) 165

10% 288 (9.43e3) 98 (5.46e3) 29 (1.60el) 23 (9.60e0) 21 (6.54¢0)|| 38 (2.44el) 169

106 524 (9.41e6) 156 (5.49e5) 32 (1.60e1) 24 (9.59¢0) 22 (6.28¢0)| 39 (2.44el) 169

10 16 (5.57¢0) 15 (4,88¢0) 15 (4.82¢0) 15 (4.94c0) 15 (4.95e0)[| 16 (5.47e0) 49

102 29 (1.31el) 22 (7.75¢0) 19 (5.54e0) 18 (5.10e0) 18 (5.05¢0)|| 22 (7.89¢0) 165

10* 72 (7.56e2) 28 (1.36el) 20 (5.68¢0) 19 (5.12¢0) 19 (5.07¢0)| 25 (9.97¢0) 169
(

106 121 (7.50e4) 32 (1.43e2) 21 (5.41e0) 20 (5.05e0) 20 (5.02¢0)|| 26 (1.0lel) 169

Table 2 Top half: overlap 6 = 2h. Bottom half: overlap § = 8h. Iteration count and
condition number estimate for the distribution in Figure 2 for the classical multiscale
coarse space, SHEM,,, m = 1,2,3,4 and SHEM;—ge_3 for h = %8, H = 16h. Here ’dim’
denotes the dimension of the coarse space.
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MS SHEM; SHEM3 SHEM3 SHEM4

a2 #it (k) #it. (k) #it. (k) #it. (k) #it. (k)
8 8 (7.67€0) 14 (5.36e0) 14 (5.02el) 14 (5.07e0) 13 (5.12€0)
16 1 (1.29e1) 6 (7.45€0) 5 (5.99¢0) 13 (5.19e0) 13 (5.15€0)
32 (2 37el) 20 (1.22el) 18 (8.97e5) 15 (7.52e0) 14 (6.55€0)
64| 41 (4.52¢1) 26 (2.23el) 22 (1.56e1) 19 (1.32c1) 18 (1.03cl)
128| 58 (8.85el) 36 (4.25el) 0 (2.88el) 25 (2.23el) 23 (1.82¢l)
256 0 (1.75€2) 50 (8.83el) 1 (5.57el) 34 (4.24el) 31 (3.42el)
16 | 367 (3.64e4) 248 (1.10e4) 187 (6.78e3) 19 (6.78e0) 17 (5.73e0)
32| 525 (7.47ed) 326 (2.32e4) 252 (1.32e4) 22 (9.33e0) 19 (7.74€0)
64 | 740 (1.51e5) 458 (4.76e4) 329 (2.72e4) 28 (1.70el) 22 (1.25¢1)
128| 1062 (3.05e5) 665 (9.62e4) 457 (5.52e4) 38 (3.15el) 29 (2.25¢l)
256(1522 (6.12e5)* 980 (1.94e5)* 679 (1.11e5)* 52 (6.06el) 41 (4.28¢l)
16| 288 (9.43e3) 98 (5.46e3) 29 (1.60el) 23 (9.60e0) 21 (6.54€0)
32| 443 (1.97e4) 129 (1.14e4) 38 (2.75el) 28 (1.53e0) 23 (8.00e0)
64| 612 (4.03e4) 170 (2.3led) 51 (5.07el) 36 (2.73el) 29 (1.27el)
128| 856 (8.17e4) 232 (4.65e4) 70 (9.82e1) 48 (5.20el) 38 (2.26el)
256| 1207 (1.64e5) 315 (9.33e4) 98 (1.94e2) 66 (1.02¢2) 52 (4.30el)

* Stagnation.

Table 3 Top: o = 1. Middle: Distribution of o from Figure 1 with & = 10%. Bottom:
Distribution of a from Figure 2 with & = 10%. Iteration count and condition number
estimate for the classical multiscale coarse space and SHEM,,, m = 1,2,3,4, solving
Problem 1 for decreasing h, H = é and overlap 6 = 2h.

3.2 What is the condition number growth in H/h?

We now test numerically the dependence on the mesh ratio H/h for the case
where o = 1 and for the high contrast cases given in Figure 1 and 2 with

= 10%. The iteration counts and condition number estimates are given
in Table 3 for decreasing h while the subdomain diameter is kept fixed at
H = 1/8. We clearly see that the convergence rate is linearly dependent
on the mesh ratio H/h, for both the constant coefficient case and the high
contrast cases. This confirms that the restrictions in the analysis in [9] are
not a property of SHEM itself, but rather restrictions of the analysis. We also
see that for very high contrast, SHEM can even fix stagnation when using
the appropriate amount of enrichment.

4 Conclusions

The numerical experiments we presented indicate that the first convergence
estimate for SHEM in Theorem 1 might not need the technical assumption
of small overlap, and also that the convergence bound with the square de-
pendence on the mesh ratio H/h is too pessimistic. Another important ob-
servation is that the dimension of the coarse space is not larger than the
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dimension of the largest subdomain in our experiments, and thus the coarse
space solve remains less expensive than the subdomain solves. Based on this
numerical investigation, we are currently carefully studying the technical es-
timates in the proof of Theorem 1 to see under which conditions on the high
contrast parameter « the overlap restriction and the quadratic dependence
on the mesh ratio in the condition number estimate can be removed. We are
also working on the extension to three dimensional problems, see [2], and on
a parallel implementation.
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Two-level preconditioners for the
Helmholtz equation

Marcella Bonazzoli', Victorita Dolean:?, Ivan G. Graham?®, Euan A.
Spence?, and Pierre-Henri Tournier?

1 Introduction

Solving the Helmholtz equation —Au — k*>u = f is a challenging task be-
cause of its indefinite nature and its highly oscillatory solution when the
wavenumber k is high. Although there have been different attempts to solve
it efficiently, we believe that there is no established and robust precondi-
tioner, whose behavior is independent of k, for general decompositions into
subdomains. In Conen et al. [2014] a two-level preconditioner was intro-
duced, where the coarse correction involves local eigenproblems of Dirichlet-
to-Neumann (DtN) maps. This method proved to be very robust with re-
spect to heterogeneous coefficients compared to the reference preconditioner
based on plane waves, and its construction is completely automatic without
the need for parameter tuning. Another method was developed in Graham
et al. [2017b,a], where two-level domain decomposition approximations of the
Helmholtz equation with absorption —Au — (k? + ie)u = f were used as pre-
conditioners for the pure Helmholtz equation without absorption; there the
coarse correction is based on a coarse mesh with diameter constrained by k.
Our purpose is to compare numerically the performance of the latter with
the two-level method based on DtN maps, both in two and three dimensions.

2 Definition of the problem

Consider the interior Helmholtz problem of the following form: let 2 C R¢,
d = 2,3, be a polyhedral, bounded domain; find u: {2 — C such that

1 Université Céte d’Azur, CNRS, LJAD, France, e-mail: marcella.bonazzoli@unice.fr
2 University of Strathclyde, Glasgow, UK, e-mail: Victorita.Dolean@strath.ac.uk
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4 UPMC Univ Paris 06, LJLL, Paris, France, e-mail: tournier@ljll.upmc.fr
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—Au— (E* +igu=f in {2, (1a)
g—u —inu=20 on I' = 012 (1b)
n

The wavenumber k is given by k(x) = w/c(x), where w is the angular fre-
quency and c is the speed of propagation that might depend on x € 2; we
take n = sign(e)k if ¢ # 0, n = k if ¢ = 0,%? as Robin boundary condition
parameter. We are interested in solving the problem in the case ¢ = 0, using ¢
as a parameter when building the preconditioner. The variational formulation
of Problem (1) is: find u € V = H(§2) such that a.(u,v) = F(v), Vv € V,
where a(.,.): VxV — Cand F: V — C are defined by

ae(u,v) = /Q (Vu- Vo — (K + ic)u) — /F inus,  F(v) = /Q /5.

Note that if € # 0 and n = sign(e)k, a. is coercive (see §2 in Graham et al.
[2017b]). We consider a discretization of the variational problem using piece-
wise linear finite elements on a uniform simplicial mesh 7} of 2. Denoting
by Vi, C V the corresponding finite element space and by {¢y}r_; its basis
functions, n := dim(V},), the discretized problem reads: find u, € V}, such
that ac(up,vn) = F(vy), Yo, € Vj,, that is, in matrix form,

Au=Tf, (2)

where the coefficients of the matrix A. € C"*" and the right-hand side
f € C" are given by (Ac)k,; = a(¢r, ¢x) and (f)r = F(¢y). The matrix A, is
complex, symmetric (but not Hermitian), and indefinite if e = 0.

3 Two-level domain decomposition preconditioners

In the following we will define the domain decomposition preconditioners for
the linear system Agu = f resulting from the discretization of the Helmholtz
problem without absorption (¢ = 0). These are two-level Optimized Re-
stricted Additive Schwarz (ORAS) algorithms, where “optimized” refers to
the use of Robin boundary conditions at the interface between subdomains.
In the terminology of Graham et al. [2017b], the prefix O is replaced with
Imp, which stands for impedance (i.e. Robin) boundary conditions.

First of all, consider a decomposition of the domain {2 into a set of over-
lapping subdomains {2; } =5 With each subdomain consisting of a union of
elements of the mesh 7y,. Let Vj,(£2 {U|Q v E Vh} 1 < j < Ngup, denote
the space of functions in V} rebtrlcted to the subdomain (2;. L(t n; be the di-
mension of V;,(.Q ), 1 <j< Ngnb g ]

%Rl For 1 <j < Ngwp, we deﬁne a restrlctlon operator R;: V;, —
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Vi (£2;) by injection, i.e. for u € V3, we set (R,u) (x;) = u(x;) for all x; € £2;.
We denote by R; the corresponding Boolean matrix in R™*™ that maps coef-
ficient vectors of functions in Vj, to coefficient vectors of functions in V;,(£2;).
Let D; € R"*"™ be a diagonal matrix corresponding to a partition of unity
in the sense that Zfi‘l‘b RI'R; = I, where R; := D;R;. Then the one-level
ORAS preconditioner (which is also the one-level ImpRAS-TmpHRASR? of
Graham et al. [2017b]) reads

Nsub

Ml = Z RT AL (3)

We define the matrices A;. in (3) to be the matrices stemming from the
discretization of the following local Robin problems with absorption

—AUJ‘ — (k‘2 + iE>Uj = f in Qj,

ou; .
8771; —inu; =0 on 042;.

In order to achieve weak dependence on the wavenumber k& and number of
subdomains, we add a coarse component to (3). The two-level preconditioner
can be written in a generic way as follows

My} =QM!P+ZE'Z", (4)
where * denotes the conjugate transpose, M 81 is the one-level preconditioner
(3), Z is a rectangular matrix with full column rank, E = Z*A.Z is the
so-called coarse grid matrix, & = ZE~!Z* is the so-called coarse grid correc-
tion matrix. If P = @ = I this is an additive two-level preconditioner (which
would be called two-level ImpRAS in Graham et al. [2017b]). If P=1— A=
and Q@ = I — Z'A., this is a hybrid two-level preconditioner (ImpHRAS in
Graham et al. [2017b]), also called the Balancing Neumann Neumann (BNN)
preconditioner. Preconditioner (4) is characterized by the choice of Z, whose
columns span the coarse space (CS). We will consider the following two cases:

The grid coarse space The most natural coarse space would be one
based on a coarser mesh, we subsequently call it “grid coarse space”. Let
us consider Tg.,,... & simplicial mesh of {2 with mesh diameter Hcoarse and
VH ouree C V the corresponding finite element space. Let Zg: Vi, ... — Vi be
the nodal interpolation operator and define Z as the corresponding matrix.

Then Let-Ro+Vp—Vo————be-thenodal-interpolation-operator-and—-gthe
eorresponding-matrix—Define4—RL—+then®? in this case £ = Z*A.Z is re-

ally the stiffness matrix of the problem (with absorption) discretized on the
coarse mesh. Related preconditioners without absorption are used in Kimn
and Sarkis [2007].
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The DtN coarse space This coarse space (see Conen et al. [2014]) is based
on local Dirichlet-to-Neumann (DtN) eigenproblems on the subdomain inter-
faces. For a subdomain £2;, first of all consider a(¥: H'(£2;) x H'(£2;) - R

aW (v, w) = /Q (Vo Vw — (k* + ie)vw) — /{m o inuo.
i n

Let (A(i))kl = q® (¢, 1), and let I and I be the sets of indices corre-
sponding, resp., to the interior and boundary dofs on (2;, with n; and np,
their cardinalities. With the usual block notation, the subscripts I and I;
for the matrices A and A denote the entries of these matrices associated
with the respective dofs. Let M, = fr oI%0)] - be the mass matrix on

the interface I; = 942; \ 912 of subdomain £2;. We need to solve the following
eigenproblem: find (u, \) € C": x C, s.t.

(Ag—\l—v AFIAIIAIF )u-)\M[' (5)

Now, the matrix Z of the DtN coarse space is a rectangular, block-diagonal

matrix with blocks W;, associated with the subdomain §2;, 1 < i < Ngup,

given by Algorithm 3.1. If m,; is the number of eigenvectors selected by the

automatic criterion in Line 2 of Algorithm 3.1, the block W; has dimensions
<ub

n; X my;, and the matrix Z has dimensions n x > . oy M. Due to the overlap
in the decomposition, the blocks may share some rows inside the matrix Z.

Algorithm 3.1 Construction of the block W; of the DtN CS matrix Z

1: Solve the discrete DtN eigenproblem (5) on subdomain (2; for the eigenpairs (A, gz)

2: Choose the m; eigenvectors gz € C"Ti such that R(\;) <k, 1 <j <m;.

3: for 5 =1 to m; do ) )

4: Compute the discrete Helmholtz extension uj € C" to £2; of gg as ug =
(- AII Arr, gz’ gﬁT-

5: end for

6: Define the matrix W; € C"iX™i as W, = (Diuzl, cee, Diu:.ni).

4 Numerical experiments

We solve (2) with & = 0 on the unit square/cube, with a uniform simplicial
mesh of diameter h ~ k~3/2, which is believed to remove the pollution effect.
The right-hand side is given by f = — exp(—100((x — 0.5)? + (y — 0.5)?)) for
d=2, f =—exp(—400((z — 0.5)® + (y — 0.5)% + (2 — 0.5)?)) for d = 3.

We use GMRES with right preconditioning (with a tolerance 7 = 1079),
starting with a random initial guess, which ensures, unlike a zero initial
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guess, that all frequencies are present in the error;®! the stopping criterion
is based on the relative residual. We consider a regular decomposition into
subdomains (squares/cubes), the overlap for each subdomain is of size O(2h)
in all directions and the two-level preconditioner (4) is used in the hybrid
way. All the computations are done in the open source language FreeFem-++
(http://www.freefem.org/ff++/). The 3d code is parallelized and run on
the TGCC Curie supercomputer. We assign each subdomain to one proces-
sor. So in our experiments the number of processors increases if the number
of subdomains increases. To apply the preconditioner, the local problems in
each subdomain (with matrices A;. in (3)) and the coarse space problem
(with matrix E in (4)) are solved with a direct solver.

As in Graham et al. [2017b,a], in the experiments we take the subdo-
main diameter Hg,p, and the coarse mesh diameter H garse constrained by k:
Hgup ~ k7% and Hegarse ~ k’o‘/7 for some choices of 0 < «, ¢’ <=1 detailed
in the following; if not differently specified, we take o = o, which is the set-
ting of all numerical experiments in Graham et al. [2017b]. Note that Hoarse
does not appear as a parameter in the DtN coarse space. We denote by ncg
the size of the coarse space. For the grid coarse space ngs = (1/Hcoarse + 1),
the number of dofs for the nodal linear finite elements in the unit square/cube.
For the DtN coarse space ngg = Z;Vjib m;, the total number of computed
eigenvectors for all the subdomains. While we solve the pure Helmholtz prob-
lem without absorption, both the one-level preconditioner (3) and the two-
level preconditioner (4) are built from problems which can have non zero
absorption given by eprec = k”. In the experiments we put 8 =1 or 8 = 2.

In the following tables we compare the one-level preconditioner, the two-
level preconditioners with the grid coarse space and with the DtN coarse
space in terms of number of iterations of GMRES and size of the coarse
space (ncg), for different values of the wavenumber k and of the parameters
a, 3. We also report the number of subdomains Ngyy,, which is controlled by
k and « as mentioned above. Since h ~ k~3/2, the dimension n of the linear
system matrix is of order k3%/2; for 3d experiments we report n explicitly.
Tables 1, 2 concern the 2d problem, Table 3 the 3d problem.

In Table 1, we let the DtN coarse space size be determined by the au-
tomatic choice criterion in Line 2 of Algorithm 3.1 (studied in Conen et al.
[2014]) and the grid coarse space size by Heoarse ~ k~%. We see that the DtN
coarse space is much larger than the grid coarse space and gives fewer iter-
ations. The preconditioners with absorption eprec = k? perform much worse
than those with absorption eprec = k independently of ncg. For eprec = £,
when a = 1 the number of iterations grows as k%, respectively k''!, for
the grid coarse space, respectively DtN coarse space (excluding the first two
values for k small where the asymptotic behaviour is not reached yet)—the

spaces—{but-at-the-ecost-of-an-increasing eoarse space-size); > while the one-

level preconditioner performs poorly (for & = 80 it needs more than 500
iterations to converge)m. When a < 1, i.e. for coarser coarse meshes, the
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B=1 B=2

a=0.6 a=0.6

k |Ngup ||1-level|grid CS|ncg |DtN CS| ncg |[1-level|grid CS|ncg |DtN CS| ncs
101 9 22 19 16 11 39 28 27 16 23 40

20| 36 48 46 49 26 204 67 56 49 40 220
40| 81 78 98 100 37 531 121 114 | 100 72 578
60( 121 109 114 144 43 1037 169 165 144 109 920
80| 169 || 139 138 | 196 93 1588 || 223 216 | 196 | 126 |1824
a=0.8 a=0.8
k | Ngub || 1-level|grid CS|ncs |[DtN CS| ncs ||1-level|grid CS|ncg [DtN CS| ncs
10| 36 35 19 49 10 122 39 27 49 28 86

20| 100 71 35 121 13 394 83 51 121 41 362
40| 361 || 158 88 400 22 1440 || 182 95 400 71 1370
60| 676 || 230 187 | 729 39 2700 || 268 150 [729| 103 |2698
80(1089|| 304 331 |1156| 68 4352 || 355 214 |1156| 138 | 4350
a=1 a=1
k |Ngup || 1-level|grid CS|ncg |DtN CS| ncg |[1-level|grid CS|ncg |DtN CS| ncs

10| 100 65 26 121 11 324 57 30 121 23 324

20| 400 122 26 441 14 1120 130 49 441 42 1120
40{1600|| 286 33 |1681| 20 4640 || 296 80 [1681| 72 4640
60({3600|| 445 45 3721 29 10560|| 455 112 |3721| 101 |10560
80(6400|| >500 62 [6561| 44 |18880(| >500 | 149 |[6561| 134 |18880

Table 1: (d = 2) Number of iterations (and coarse space size ncg) for the one-
level preconditioner and the two-level preconditioners with the grid coarse
space/DtN coarse space, with Hgup = Heoarse ~ k™%, €prec = kP,

growth with % is higher, and for o = 0.6 the two-level preconditioner is not
much better than the one-level preconditioner because the coarse grid prob-
lem is too coarse; for a = 0.8 with the DtN coarse space the growth with k
degrades less than with the grid coarse space.

We have seen in Table 1 that the DtN coarse space gives fewer iterations
than the grid coarse space, but their sizes differed significantly. Therefore, in
Table 2 we compare the two methods forcing ncg to be similar. On the left,
we force the DtN coarse space to have a smaller size, similar to the one of the
grid coarse space, by taking just m; = 2 eigenvectors for each subdomain. On
the right, we do the opposite, we force the grid coarse space to have the size
of the DtN coarse space obtained in Table 1, by prescribing a smaller coarse
mesh diameter H garse, While keeping the same number of subdomains as in
Table 1 with Hgy, ~ k~“. We can observe that for smaller coarse space sizes
(left) the grid coarse space gives fewer iterations than the DtN coarse space,
while for larger coarse space sizes (right) the result is reversed.

We have seen that the coarse mesh obtained with Higarse ~ k;_o‘l, o =
can be too coarse if & = 0.6. At the same time, for a = 1 the number of
subdomains gets quite large since Hgy, ~ k™, especially in 3d; this is not
desirable because in our parallel implementation we assign each subdomain
to one processor, so communication among them would prevail and each
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ncs forced by grid CS ncs forced by DtN CS
a=0.6 a=0.6
k |Ngub||grid CS|ncs |DtN CS| ncs ||grid CS| ncg [DtN CS| ncs
101 9 19 16 18 18 17 36 11 39
20| 36 46 49 44 72 24 196 26 204

40| 81 98 100 85 162 50 529 37 531
60| 121 114 | 144 | 109 242 104 841 43 1037
80| 169 138 | 196 140 338 173 | 1521 93 1588

a=0.8 a=0.8
k | Ngup ||grid CS|ncs |DtN CS| ncs ||grid CS| ncs |DtN CS| ncs
10| 36 19 49 26 72 15 121 10 122

20( 100 35 121 61 200 20 361 13 394
40| 361 88 400 139 722 35 1369 22 1440
60| 676 187 | 729 191 1352 52 2601 39 2700
80|1089 331 [1156| 250 2178 78 4225 68 4352
a= a=1
k | Ngub [|grid CS|ncs |DtN CS| ncs ||grid CS| ncg |DtN CS| ncs

10| 100 26 121 52 200 17 324 11 324

20| 400 26 441 43 800 23 1089 14 1120
401600 33 1681| 157 3200 22 4624 20 4640
60{3600 45 3721| 338 7200 26 10404 29 10560
8016400 62 |6561] >500 (12800 30 18769 44 18880

Table 2: (d = 2) Number of iterations (and coarse space size ncg) for the
two-level preconditioners with the grid coarse space/DtN coarse space forcing
similar nog, with Hgy, ~ E7¢, €prec = k.

processor would not be fully exploited since the subdomains would become
very small. Therefore, to improve convergence with the grid coarse space
while maintaining a reasonable number of subdomains, we consider separate
Heoarse and Hgyp, taking o # «. For load balancing (meant as local prob-
lems having the same size as the grid coarse space problem), in 3d we choose

= 3/2 — a. The DtN coarse space is still built by keeping the eigenvec-
tors verifying the automatic choice criterion; note that in 3d the number of
selected eigenvectors is larger than in 2d, but we only keep a maximum of 20

elgenvectors in each Subdomaln %&Dﬂ*ﬁe@&rsesp&eeﬁﬁeﬁsﬁ}}de%ermmeé

rﬂ—e&ekksubdemarﬁm In Table 3 we report the results of thlb experlrnent
As expected, for the grid coarse space the best iteration counts are obtained
for @« = 0.5 because then o’ = 1 gives the coarse mesh with the small-
est diameter among the experimented ones: the number of iterations grows
slowly, with O(k%-%1) = O(n%!?). With higher « the iteration counts get
worse quickly, and o = 0.8 is not usable. For the DtN coarse space, the larger
coarse space size is obtained by taking « bigger (recall that o’ is not a pa-
rameter in the DtN case): for a = 0.8 the number of iterations grows slowly,
with O(k%2) = O(n°%4), but this value may be optimistic, there is a decrease
in iteration number between k = 20 and 30. We believe that for the other
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a=05ad =1

k n Ngub ||1-level|grid CS| ncs |DtN CS| ncs
10| 39304 27 25 12 1331 14 316
20| 704969 | 64 39 17 9261 31 1240
30( 5000211 | 125 55 21 |29791| 54 2482
40(16194277| 216 74 29 168921 80 4318
a=10.6,a’ =0.9
k n Ngup || 1-level|grid CS| ncsg [DtN CS| ncs

10| 39304 | 27 25 15 512 14 316

20| 912673 | 216 61 24 3375 41 2946
30| 4826809 | 343 73 34 [10648| 65 6226
40116194277| 729 98 48 21952| 108 |13653
a=0.7a =0.8
k n Ngub || 1-level|grid CS| ncs |DtN CS| ncs

10| 46656 | 125 34 19 343 11 896

20| 912673 | 512 73 35 1331 18 4567
30| 5929741 |1000(| 103 57 4096 65 [12756
40(17779581(2197|| 139 89 8000 | 116 {30603
a=0.8,a =0.7
k n Ngub ||1-level|grid CS| ncs |DtN CS| ncs

10| 50653 | 216 39 23 216 19 1354
20( 1030301 [1000|| 46 86 729 23 7323
30( 5929741 |3375]|| 137 116 | 1331 21 |26645
40(28372625|6859 || 189 200 | 2744 27 154418

Table 3: (d = 3) Number of iterations (and coarse space size ncg) for the one-
level preconditioner and the two-level preconditioners with the grid coarse
space/DtN coarse space, with Hgyp, ~ k™%, Heoarse ~ k™%, €prec = k-

values of «, where the iteration counts are not much better or worse than
with the one-level preconditioner, we did not compute enough eigenvectors
in each subdomain to build the DtN coarse space.

5 Conclusion

We tested numerically two different coarse space definitions for two-level do-
main decomposition preconditioners for the pure Helmholtz equation (dis-
cretized with piecewise linear finite elements), both in 2d and 3d, reaching
more than 15 million degrees of freedom in the resulting linear systems. The
preconditioners built with absorption epec = k? appear to perform much
worse than those with absorption epec = k. We have seen that in most cases
for smaller coarse space sizes the grid coarse space gives fewer iterations than
the DtN coarse space, while for larger coarse space sizes the grid coarse space
gives generally more iterations than the DtN coarse space. The best itera-
tion counts for the grid coarse space are obtained by separating the coarse
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mesh diameter Heoase ~ k¢ from the subdomain diameter Heyy, ~ k=2,
taking o/ > . Both for the grid coarse space-the-eoarse-grid-space™? and the
DtN coarse space, for appropriate choices of the method parameters we have
obtained iteration counts which grow quite slowly with the wavenumber k.
Further experiments to compare the two coarse spaces-the-two-definitions-of
eoarse-spaece? should be carried out in the heterogenous case.
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A two-level domain-decomposition
preconditioner for the time-harmonic
Maxwell’s equations

Marcella Bonazzoli', Victorita Dolean'2, Ivan G. Graham?, Euan A.
Spence?, and Pierre-Henri Tournier?

1 Introduction

The construction of fast iterative solvers for the indefinite time-harmonic
Maxwell’s system at mid- to*? high-frequency is a problem of great current
interest. Some of the difficulties that arise are similar to those encountered
in the case of the mid- to™? high-frequency Helmholtz equation. Here we
investigate how domain-decomposition (DD) solvers recently proposed for
the high-frequeney™? Helmholtz equation work in the Maxwell case.

The idea of preconditioning discretisations of the Helmholtz equation with
discretisations of the corresponding problem with absorption was introduced
in Erlangga et al. [2004]. In Graham et al. [2017a], a two-level domain-
decomposition method was proposed that uses absorption, along with a
wavenumber dependent coarse space correction. Note that, in this method,
the choice of absorption is motivated by the analysis in both Graham et al.
[2017a] and the earlier work Gander et al. [2015].

Our aim is to extend these ideas to the time-harmonic Maxwell’s equations,
both from the theoretical and numerical points of view. These results will
appear in full in the forthcoming paper Bonazzoli et al. [2017].

Our theory will apply to the boundary value problem (BVP)

Vx(VXE)—(k®+ik)E=J in (1)
Exn=0 onl: =090

where {2 is a bounded Lipschitz polyhedron in R?® with boundary I' and
outward-pointing unit normal vector n, k is the wave number, and J is the
source term. The PDE in (1) is obtained from Maxwell’s equations by as-
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suming that the electric field £ is of the form €(x,t) = R(E(x)e™'“!), where
w > 0 is the angular frequency. The boundary condition in (1) is called Per-
fect Electric Conductor (PEC) boundary condition. The parameter  dictates
the absorption/damping in the problem; in the case of a conductive medium,
k = koZ, where ¢ is the electrical conductivity of the medium and Z the
impedance. If 0 = 0, the solution is not unique for all £ > 0 but a sufficient
condition for existence of a solution is V- J = 0.

We will also give numerical experiments for the BVP (1) where the PEC
boundary condition is replaced by an impedance boundary condition, i.e. the

BVP
Vx(VXE)— (K®+ik)E=J in 2 @)
(VXE)xn—iknx (Exn)=0 onI :=091

In contrast to the PEC problem, the solution of the impedance problem
is unique for every k > 0. There is large interest in solving (1) and (2)
both when x = 0 and when k # 0. We will consider both these cases, in
each case constructing preconditioners by using larger values of k. Indeed, a
higher level of absorption makes the problems involved in the preconditioner
definition more “elliptic” (in a sense more precisely explained in Bonazzoli
et al. [2017]), thus easier to solve. Note that the absorption cannot increase
too much, otherwise the problem in the preconditioner is “too far away” from
the initial problem.?!

2 Variational formulation and discretisation

Let Ho(curl; 2) := {v € L%(£2),V x v € L*(2),v x n = 0}. We introduce
the k-weighted inner product on Hy(curl; £2):

(V,W)curl’k = (V x v,V x W)Lz(Q) + kz(V,W)LZ(Q).

The standard variational formulation of (1) is: Given J € L?(§2), k € R and
k>0, find E € Hy(curl; £2) such that

ax(E,v) = F(v) for all v € Hy(curl; 2), (3)

where
aK(E,v)::/VxE-va—(k2+in)/E-V (4)
2 2

and F(v) := [, J-¥V. When & > 0, it is well-known that the sesquilinear form
is coercive (see, e.g., Bonazzoli et al. [2017] and the references therein) and
so existence and uniqueness follow from the Lax-Milgram theorem.

Nédélec edge elements are particularly suited for the approximation of
electromagnetic fields. They provide a conformal discretisation of H(curl, (2),
since their tangential component across faces shared by adjacent tetrahedra
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of a simplicial mesh 7" is continuous. We therefore define our approximation
space V' C Hy(curl; £2) as the lowest-order edge finite element space on the
mesh 7" with functions whose tangential trace is zero on I'. More precisely,
over each tetrahedron 7, we write the discretised field as E;, = ZeET CeWe,
a linear combination with coefficients ¢, of the basis functions w, associ-
ated with the edges e of 7, and the coefficients ¢, will be the unknowns of
the resulting linear system. The Galerkin method applied to the variational
problem (3) is

find E;, € V" such that a.(Ej,vy) = F(vy) forall v, € V2. (5)

The Galerkin matrix A, is defined by (Ax)ij = ax(We,,We,) and the
Galerkin method is then equivalent to solving the linear system A,U = F,
where F; := F(we,;) and U; := c,;.

3 Domain decomposition

To define appropriate subspaces of V', we start with a collection of open
subsets {2, : £ =1,...,N} of R? of maximum diameter Hy,, that form an
overlapping cover of 2, and we set 2, = f)g N £2. Each 2, is assumed to be
non-empty and is assumed to consist of a union of elements of the mesh 7.
Then, for each £ =1,..., N, we set

Ve :=V"n Hy(curl, £2/),

where Hy(curl, £2¢) is considered as a subset of Hy(curl;{2) by extending
functions in Hy(curl, £2¢) by zero, thus the tangential traces of elements of
V; vanish on the internal boundary 02,\I" (as well as on 92, N I"). Thus a
solve of the Maxwell problem (3) in the space Vy involves a PEC boundary
condition on 92 (including any external parts of 92). When x # 0, such
solves are always well-defined by uniqueness of the solution of the BVP (1).

Let Z" be the set of interior edges of elements of the triangulation; this set
can be identified with the degrees of freedom of V*. Similarly, let Z"(£2,) be
the set of edges of elements contained in (the interior of) {2, (corresponding to
degrees of freedom on those edges). We then have that Z" = UN_, 7" (§2,). For
e € I"(§2) and ¢’ € I", we define the restriction matrices (Rp)eer := e er-
We will assume that we have matrices (D), satisfying

N
> R{D/R; =1I; (6)
(=1

such matrices (Dg)Y_, are called a partition of unity.
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For two-level methods we need to define a coarse space. Let {7} be a
sequence of shape-regular, tetrahedral meshes on {2, with mesh diameter H.
We assume that each element of 7 consists of the union of a set of fine
grid elements. Let Z be an index set for the coarse mesh edges. The coarse
basis functions {w’} are taken to be Nédélec edge elements on T with
zero tangential traces on I'. From these functions we define the coarse space
Vo := span{w/’ : p € T}, and we define the “restriction matrix”

(R()) ¢ej ep / W -t, j€ Ih’ pE IH7 (7)

where 1. are the degrees of freedom on the fine mesh.
With the restriction matrices (Ry))_, defined above, we define

Any = RALRI, 0=0,...,N

For £ =1,..., N, the matrix A, ¢ is then just the minor of A, correspond-
ing to rows and columns taken from Ih(Qg). That is A, ¢ corresponds to
the Maxwell problem on {2, with homogeneous PEC boundary condition on
002,\I'. The matrix A, ¢ is the Galerkin matrix for the problem (1) discre-
tised in V. In a similar way as for the global problem it can be proven that
matrices A, ¢, £ =0,..., N, are invertible for all mesh sizes h and all choices
of kK #£ 0.

In this paper we consider two-level preconditioners, i.e. those involving
both local and coarse solves, except if ‘1-level’ is specified in the numerical
experiments. The classical two-level Additive Schwarz (AS) and Restricted
Additive Schwarz (RAS) preconditioners for A, are defined by

N

M, AS = ZR Rf Mn RAS ‘= ZR?DZA;%RZ- (8)
=0

In the numerical experiments we will also consider two other precondition-
ers: (i) M;IlmpRAS, which is similar to M_RAS, but the solves with A, , are
replaced by solves with matrices correspondmg to the Maxwell problem on
2, with homogeneous impedance boundary condition on 92,\I", and (ii) the

hybrid version of RAS

N
M fipas = (I — ZA,) (Z RZTDgA;}Rg> (I—AxZ)+ =, 5 =R{A, §Ro.
9)

In a similar manner we can define M 11{ As M ; ImpHRAg: the hybrid versions
of AS and ImpRAS.
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4 Theoretical results

The following result is the Maxwell-analogue of the Helmholtz-result in [Gra-
ham et al., 2017b, Theorem 5.6] and appears in Bonazzoli et al. [2017]. We
state a version of this result for s ~ k?, but note that Bonazzoli et al. [2017]
contains a more general result that, in particular, allows for smaller values of
the absorption k.

Theorem 1 (GMRES convergence for left preconditioning with s ~
k?). Assume that £2 is a convex polyhedron. Let Cy, be the matriz representing
the () curik inner product on the finite element space VP in the sense that
if v, wy € VP with coefficient vectors V, W then

(Vh, Wh) curie = (V, W)c,. (10)

Consider the weighted GMRES method where the residual is minimised in the
norm induced by Cy. Let v™ denote the mth residual of GMRES applied to
the system Ay, left preconditioned with M;}L‘S. Then

Er (1 (s GI))) " "

provided the following condition holds:

max {kHyw, kH} < C (1+ (§>2>1 (12)

where Hgyp, and H are the typical diameters of a subdomain and of the coarse
grid, § denotes the size of the overlap, and Cy is a constant independent of
all parameters.

As a particular example we see that, provided x ~ k2, H ~ Hgy, ~ k~ % and
0 ~ H (“generous overlap”), then GMRES will converge with a number of
iterations independent of all parameters. This property is illustrated in the
numerical experiments in the next section. A result analogous to Theorem 1
for right-preconditioning appears in Bonazzoli et al. [2017].

5 Numerical results

In this section we will perform several numerical experiments in a cube
domain with PEC boundary conditions (Experiments 1-2) or impedance
boundary conditions (Experiments 3-4). The right-hand side is given by
J =1[f, f, f], where f = —exp(—400((z — 0.5)% + (y — 0.5)? + (2 — 0.5)?)).
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We solve the linear system with GMRES with right preconditioning, start-
ing with a random initial guess, which ensures, unlike a zero initial guess,
that all frequencies are present in the error; the stopping criterion, with a
tolerance of 107, is based on the relative residual. The maximum num-
ber of iterations allowed is 200. We consider a regular decomposition into
subdomains (cubes), the overlap for each subdomain is of size O(2h) (ex-
cept in Experiment 1, where we take generous overlap) in all directions.
All the computations are done in FreeFem++, an open source domain spe-
cific language (DSL) specialised for solving BVPs with variational methods
(http://www.freefem.org/ff++/). The code is parallelised and run on the
TGCC Curie supercomputer and the CINES Occigen supercomputer. We as-
sign each subdomain to one processor. Thus in our experiments the number
of processors increases if the number of subdomains increases. To apply the
preconditioner, the local problems in each subdomain and the coarse space
problem are solved with a direct solver (MUMPS on one processor). In all
the experiments the fine mesh diameter is h ~ k~3/2, which is believed to
remove the pollution effect.

In our experiments we will often choose Hgy, ~ H and our precondition-
ers are thus determined by choices of H and x, which we denote by Hprec
and Kprec. The absorption parameter of the problem to be solved is denoted
Kprob- The coarse grid problem is of size ~ H&%C and there are ~ Hp_rzec local
problems of size (Hprec/h)? (case Hgyp, ~ H). In the tables of results, n de-
notes the size of the system being solved, ncg the size of the coarse space, the
figures in the tables denote the GMRES iterations corresponding to a given
method (e.g. #AS is the number of iterations for the AS preconditioner),
whereas Time denotes the total time (in seconds) including both setup and
GMRES solve times®2. For some of the experiments we compute (by linear
least squares) the approximate value of v so that the entries of this column
grow with k7. We also compute £ so that the entries of the column grow with
n¢ (here £ = v-2/9, because n ~ (h3/2)% = 9/2).

Experiment 1. The purpose of this experiment is to test the theoretical
result which says that even with AS (i.e. when solving PEC local problems),
provided H ~ Hgup, ~ k™', 6 ~ H (generous overlap), Kprob = fiprec = k2, the
number of GMRES iterations should be bounded as k increases. In Table 1 we
compare three two-level preconditioners: additive Schwarz, restricted additive
Schwarz, and the hybrid version of restricted additive Schwarz. Note that in
theory we would expect AS to be eventually robust, although its inferiority
compared to the other methods is to be expected Graham et al. [2017a].

Experiment 2. In this experiment (Table 2) we set Kprob = Kprec = k2
and H ~ Hgyp, ~ k7%% and the overlap is O(2h) in all directions. As we are
not in the case Hpree ~ k~' and we do not have generous overlap, we do
not expect a bounded number of iterations here. Nevertheless, the method
still performs well. Not surprisingly, the best method is ImpHRAS, as better
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k n Neub| ncs  |[#AS|#RAS[#HRAS
10[4.6 x10°[1000(7.9x103]] 53 26 12
15|1.5 x10%[3375(2.6x10%|| 59 28 12
20(1.2 x107|8000(6.0x10%|| 76 29 17

Table 1 § ~ H (generous overlap), H ~ Hgy, ~ k™1, Kprob = Kprec = k2.

transmission conditions at the interfaces between subdomains are used in the
preconditioner. It is important to note that the time is growing very much
slower than the dimension of the problem being solved.

k n Nguwb| ncs  ||[#RAS (#HRAS)|#ImpRAS (#ImpHRAS)|Time ImpHRAS
10[3.4 x 10°[ 216 {1.9x103 34 (23) 27 (20) 11.0
20(7.1 x 10%{1000|7.9x103 43 (31) 35 (28) 42.6
30[4.1 x 107|3375|2.6x10* 47 (34) 39 (32) 100.9
40|1.3 x 108|6859|5.1x10% 49 (36) 42 (35) 264.5
v 45 2.23
Table 2 § ~ 2h, H ~ Hgyp, ~ k=98, Kprob = Kprec = k2.

Experiment 3 In this case we take Kp.o, = k. Moreover, we take

impedance boundary conditions on 9f2. We take H ~ Hgyp ~ k™%, Kprec =
kP, and we use InpHRAS as a preconditioner.

a=0.6 a=0.8
k n Ngub| ncs  |#2-level n Ngub| ncs  |#2-level
10[[2.6 x 105] 27 [2.8x102 31 3.4 x 10°] 216 [1.8 x 103] 29
20([6.3 x 10°| 216 |1.9 x 103| 87 ||7.1 x 10%/1000{7.9 x 103| 60
30(/3.3 x 107| 343 [2.9 x 103| 148 ||4.1 x 107|3375|2.5 x 10*| 90
40((1.1 x 108| 729 [5.9 x 103| 200 |[1.3 x 108|6859(5.1 x 10*| 154
B=1 B=2

k n Naub| ncs #2-level(Time) |#2-level(Time)

10[3.4 x 10°[ 216 1.8 x 103 29 (12.9) 37 (13.1)

20(7.1 x 105/1000|7.9 x 103 60 (63.7) 70 (69.8)

30(4.1 x 107|3375(2.5 x 10%|| 90 (200.4) 101 (221.2)

40]1.3 x 108|6859(5.1 x 10%|| 154 (771.7) 137 (707.6)

v 45 2.4 1.2 (2.9) 0.94 (2.8)

3 1.0 0.5 0.3 (0.6) 0.2 (0.6)

Table 3 kprob = k, 6 ~ 2h, H ~ Hoyp, ~ k™%, kiprec = k%; Top:Fefl? 8 =2, a = 0.6,0.8;
Bottom:Right:F2 o = 0.8, 8 =1,2.

In Table 3 on the bottom we see that the dimension of the coarse space is

nos = (k708)73 = k24 =

O(nOA

5).
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This is reflected in the v and £ figures in the ncg column. For this method
the reduction factor ncs/n is substantial (about 3.9 x 10~% when k = 40).
The computation time grows only slightly faster than the dimension of the
coarse space, showing (a) weak scaling and (b) MUMPS is still performing
close to optimally for Maxwell systems of size 5 x 10%. Iteration numbers are
growing with about n%-3 at worst. Note that the iteration numbers may be
improved by separating the coarse grid size from the subdomain size, making
the coarse grid finer and the subdomains bigger.

Experiment 4. Here we solve the pure Maxwell problem without ab-
sorption, i.e. Kpropb = 0, with impedance boundary conditions on 9f2. In
the preconditioner we take Kprec = k. Results are given in Table 4, where
Hoyp ~ k™% H ~ k~=<". These methods are close to being load balanced in
the sense that the coarse grid and subdomain problem size are very similar
when o + o' = 3/2.

Out of the methods tested, the 2-level method (ImpHRAS) with (o, &) =
(0.6,0.9) gives the best iteration count, but is more expensive. The method
(o, ') = (0.7,0.8) is faster but its iteration count grows more qu1ck1y, S0
1ts advantage will d1m1n1sh as k increases further. 4

re—{ara= ") = (0.6, 0 9) the coarse grid size grows
with O(n®6%) Whlle the time grows with O(n"%%)QHVEGME For (o, /) =
(0.7,0.8) the rates are O(n%>%) and O(n")O{x»"T3MB " The subdomain
problems are solved on individual processors so the number of processors
used grows as k increases. In the current implementation a sequential direct
solver on one processor is used to factorize the coarse problem matrix, which
is clearly a limiting factor for the scalability of the algorithm. The timings
could be significantly improved by using a distributed direct solver, or by
adding a further level of domain decomposition for the coarse problem solve.
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A Coarse Space to Remove the Logarithmic
Dependancy in Neumann-Neumann Methods

Faycal Chaouqui', Martin J.Gander!, and Kévin Santugini-Repiquet?

1 Introduction

Domain Decomposition Methods are the most widely used methods for solving
large linear systems that arize from the discretization of partial differential equa-
tions. The one level versions of these method are in general not scalable!, since
communication is just between neighboring subdomains, as it was pointed out al-
ready in [15], and one must add an additional coarse correction in order to share
global information between subdomains. Examples of early such coarse corrections
are proposed in [5, 6] for the additive Schwarz method, and in [12, 13, 14, 12, 7] for
Neumann-Neumann and FETI methods, for a comprehensive treatement, see [16].

We are interested here in Neumann-Neumann methods, for which the one level
condition number k] and the two-level condition number x, with a piecewise con-
stant coarse space satisfy the estimates

C H H
K< (l +10g2(h)) , k<C (1 +log2(h)> , (1)

where H is the typical size of a subdomain, % is the mesh size, and the constant
C is indepandent of 4 and H, see [4, 12, 13]. These condition number estimates
guarantee robust convergence when Neumann-Neumann is used as a preconditioner
for a Krylov method, up to the logarithmic term.

We are interested here in understanding precisely where this logarithmic term
is coming from, and how it can be removed using an appropriately chosen coarse
space. To this end, we study the Neumann-Neumann method directly as an itera-
tive method, not as a preconditioner, and consider the Laplace equation and two

! Université de Genéve, Section de mathématiques, e-mail: {Faycal.Chaouqui}{Martin.
Gander}@unige.ch .2 Université Bordeaux, IMB, CNRS UMRS5251, MC2, INRIA Bordeaux
- Sud-Ouest, e-mail: Kevin.Santugini@math.u-bordeauxl.fr

! Notable exceptions are the time dependent wave equation with finite speed of propagation [8],
and the Laplace equation in certain molecular simulations with specific geometry [2, 3].
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Fig. 1: Left: Strip decomposition. Right: Decomposition with a cross point

specific decompositions: a strip decomposition into a one dimensional sequence of
subdomains, and a decomposition including cross points, see Figure 1.

For the strip decomposition, we will show that in the case of Dirichlet boundary
conditions, the one level iterative Neumann-Neumann algorithm is convergent and
can be weakly scalable, even without coarse grid, for a specific setting, and there
are no polylogarithmic terms in the convergence estimate. In the case of Neumann
boundary conditions, a coarse space of constant functions is needed to make the
Neumann-Neumann method weakly scalable, and again there are no polylogarith-
mic terms in the convergence estimate. For a decomposition with cross points, we
show that the iterative Neumann-Neumann algorithm does not converge, due to log-
arithmically growing modes at the cross point, and following ideas in [9, 11, 10],
we enrich the coarse space with the corresponding modes to obtain a convergent
iterative Neumann-Neumann algorithm without polylogarithmic growth.

2 Neumann-Neumann algorithm for a strip decomposition

We start by studying the convergence and weak scalability of the Neumann-Neumann
algorithm for the Laplace equation,

u(a,-)=0, wu(b,")=0, 2)

on the rectangular domain Q := (a,b) x (0,L) decomposed into strips, as shown in
Figure 1 on the left, where aj = a+ jH for j=0,...,N,and ;= (aj_1,a;) x (0,L)
for j =1,...,N. Given an initial guess g(])- at the interfaces, where we define gjj =
gy = 0 for convenience, the Neumann-Neumann algorithm computes for iteration
index n =0, 1,... first solutions of the Dirichlet problems

—AM;I :fj in .Qj,
Wiajo1,) = gy, wiay,) =g

3)
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with outer boundary conditions u’j(-,0) = u’}(-,L) = 0, followed by solving Neu-

mann problems on interior domains Q;, j=2,3,...,N—1, given by
—Ay} =0 in&j,
A 1) = (9wt (a/ 1) =y (aj-1,-))/2, @
oxyi(aj,-) = (0 u”(a,, ) =}y (aj,0))/2,
and on the left and right most subdomains the Neumann problems are
—Ayl =0 in Qy,
¥i(a,) =0, dyi(ar,) = (duii(ar,) — duz(a1,-)/2,
—Ayy =0 in Qy,
w;;l’(b7 ) = 07 axW]r\'/(aN*la ) = (axunN(ath ) - axunN—l (aN*l 5 ))/27
all with outer boundary conditions y7(-,0) =0and y/(-,L) =0, j=1,...,N. The
new interface traces are then obtained by the updating formula
gt =gl — (Wi (aj, )+ ¥i(aj))/2, j=1,...,N—1. )

To study the convergence of this iterative Neumann-Neumann method, it suffices by
linearity to apply the algorithm to Equation (2) with f = 0, and to study the conver-
gence of the approximate solution #” to the zero solution. Since the subdomains are
rectangles, the iterates can be expanded in a sine series,

ui(x,y) = Zli?}(x,m) sin(kny), Z ) sin(kpy), 6)
where k,, := %, which allows us to study the convergence based on the Fourier
coefficients.

: ,%71(aN_1,m)]T € RN=1 then
T(m,H)a""" (m), where T(m,H) € RV-1xN=1) g

Lemma 1. Let u"(m) = [u}(ay,m),i(az,m),...
for* N >3 we have u" (m) =

given by

_ | -
1 e 0 oo e 0

0 2 0 —1°

. —1 0 2 0 -1
T(mH)=——
(m,H) 4sinh?(k,H) | © 0
2 0 -1
: . -1 0 2 0
1

L 0 0 -1 cosh(ky, H) 1 i

2 For N = 2 the structure of T (m, H) is not the same since there are no inner subdomains.
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Proof. Foreachm > land j=2,....N — 1, «j(x,m) and y7} (x,m) satisfy

iyt — Oill} = 0, k,%ll/?}? — oW} =0,
wi(aj—1,m) = g;_y(m), Wjlaj—1,m) = (dwrj(aj-1,m)—dulj_,(aj-1,m))/2,
}(aj,m) = g}(m), vi(aj,m) = (du'i(aj,m)— 0 M,+1(aj7m))/2~

The solution of the Dirichlet problems on interior subdomains are thus

sinh (k,(x —aj_1))
sinh (k,,H)

sinh (ky,(a; —x))
sinh (k,H)

w'j(x,m) = g} (m) +8_1(m) j=2,...,.N—1,

and on the subdomains on the left and right we get

sinh (k,, (x — ap))
sinh (k,H)

sinh (k,, (ay —x))

i (x,m) = g1(m) sinh (kpH)

Similarly for the Neumann problems on the interior subdomains, we obtain

Y (x,m) = <2§7(m)005h(ka) gim) &y (m) ) cosh (kn(x —a;j-1))

sinh (k,H)  sinh(k,H) sinh (k,H) 2sinh (k,,H)
28" (m) cosh (knH) gj_o(m) 7 gj(m) cosh (ky(aj—x))
81" Ginh (kwH)  sinh(k,H) sinh(k,H) 2sinh (k,H)

and for the first and last subdomains we find

cosh (k,H)  g5(m) ) sinh (k,, (x — ag))
sinh(k,,H) sinh(k,H)/ 2cosh(k,H) ’
cosh (k,H)  &h_,(m) ) sinh (k (ay —x))

Y (o m) = (2@7@1(171) sinh (kyH)  sinh(knH) )  2cosh (kuH)

em) = (2§7<m>

Using now (5) and the fact that &} (a;,m) = gj(m) for each m > 1, we get the stated
recurrence relation.

Lemma 2. I[f H/L > In(14+/2) /7 then for any m > 1 we have ||T (m,H)|. < 1.

for each m and since

1 1 1
Y k2 (konH ) sinh? (ky, H ) < sinh? (k H)

which is strictly smaller than 1 if H /L > In(1 4+ +/2) /=, which concludes the proof.

Proof. Ttis straightforward to see that ||T (m, H)||e < m

is strictly decreasing for m > 1, we have that

Theorem 1. For N > 3 Neumann-Neumann satisfy the L* error bound

N1 1/2 1/2
<21||u';<a,-,~>||%> < G (znu ||2> .
J:
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Fig. 2: Left: dependence of y/|A+(B)|, k =1,...,3 on the mesh size % in semi-log

scale. Right: dependence of the semi-log scale slope of |A(B)|, k =1,...,3 on k,
with o := %.

Proof. Since for N > 3 we have that ||T (m,H)l|j2 < /||

1 . . . 2 _
prITAE and using the Parseval identity ||u/}(a;,")[|5 =
the result stated.

~

(1, H) ||| |7 (m, H) |1 <
Yoo ul(aj,m)?, we get

Slle)

Theorem 1 shows that under a minimal assumption, the one level Neumann-
Neumann algorithm for the strip decomposition is weakly scalable, provided H re-
mains fixed, i.e. more and more subdomains of the same size are added, see also
[2, 3] for the corresponding Schwarz scaling. If the original Laplace problem (2)
has however Neumann conditions at x = 0 and x = L, then the interior subdomains
become floating in the Neumann-Neumann algorithm, and a minimal coarse space
consisting of piecewise constant functions is required in order to remove the kernel,
and this is sufficient to make the algorithm weakly scalable as in previous case with
an L2 bound as in Theorem 1, see [1].

3 Neumann-Neumann algorithm with cross points

We now study the convergence properties of the iterative Neumann-Neumann algo-
rithm for decompositions with cross points, like the one shown in Figure 1 on the
right. Since in this case the algorithm might be undefined at the continuous level due
to possible discontinuity at the cross point, we study numerically the convergence
of the fixed point iteration

u,i1 = Bu, +f, (N

where B € R4*¢ and f € R? are obtained by discretizing the Neumann-Neumann al-
gorithm using five-points stencil central finite differences. We first show in Figure 2
on the left the three largest (double) eigenvalues in modulus of B when the mesh
is refined. We clearly see logarithmic growth, and the iterative Neumann-Neumann
method will diverge as soon as the mesh size & is small enough, in our example
h = 0.12. Hence, in contrast to the classical alternating and parallel Schwarz meth-
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Fig. 3: Left: dominant eigenfunction of B. Right: second eigenfunction of B.

ods, the Neumann-Neumann method can then not be used as an iterative solver. We
note however also that the logarithmic growth of the first dominant eigenvalue is
faster than the second and the third one. On the right in Figure 2, we show how the
growth rate (the slope) of these diverging modes depends on the eigenvalue index k.
We see that the growth decays very rapidly, like 1/k% with oc = 10/3, so when & goes
to zero, there are only O(k) divergent modes (those with corresponding eigenvalues
greater than 1 in the absolute value), where 1/k%log?(h) < 1,1i.e k ~ (log?(h))!/<.

We next show in Figure 3 the two corresponding dominant eigenmodes of B for a
mesh size h = 0.01. Since their eigenvalues are double eigenvalues, we chose from
the two dimensional subspace of eigenfunctions the one vanishing at the interface
aligned with the x axis; the other eigenmode has the same shape, just rotated by 90
degrees. We see that the cross point causes the iterative Neumann-Neumann method
to generate eigenmodes with a singular behavior at the cross point, and these modes
lead to divergence of the iterative Neumann-Neumann method.

To avoid such logarithmic growth, and obtain an convergent iterative Neumann-
Neumann method, one can remove the few divergent modes using an enriched
coarse space. Let F be a subspace of R? and F its orthogonal complement with
standard inner product. Then we can use the reordering

F Ft
_F[B c| _ _F [ul, F[f
B_FL{G E]’“‘Fl{ﬁ]’f_ Fl[f]’ ®)
and the iterative Neumann-Neumann algorithm (7) becomes
U] [B C) [, f
o= [ 8 ]+ [ ’

To correct the problem of the divergent modes, we propose to use the iteration
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Fig. 4: Left: error of iteration (10) for different dimension of F. Right: same, but
using orthogonal iteration to approximate F.

U1 = B, +f+ G, (10a)
(I—B)Uys1 = Clysy +1, (10b)

where (10b) is solved exactly.

Theorem 2. If F consists of all eigenfunctions of B with respective eigenvalues
greater than 1 in absolute value, then iteration (10) converges for any uy € R?.

Proof. From (10), we obtain

U1 = (B+GUI—B) 'C)i, +f+G(I—B)'f,
i1 = (I—B) " (Cliyy1 +1),

and hence the method is convergent iff p(B+G(I —B)~'C) < 1. Since F consists of
the divergent eigenmodes of B we have that G is zero and the condition for conver-
gence becomes p(§) < 1, which is satisfied since B does not contain the divergent
eigenmodes of B.

We show in Figure 4 on the left the error of iteration (10) with a random initial
guess ug as a function of the iteration number n for different choices of the dimen-
sion of F, using the same mesh size 7 = 0.01 in a semi-log scale. We see that with
dim(F) = 2, the iterations start already to converge while without correction the
iteration diverges. Increasing the dimension of ' improves convergence further. Us-
ing just orthogonal iterations to approximate F gives already satisfactory results, as
shown on the right in Figure 4.

4 Conclusion

We showed that the logarithmic growth in the condition number estimate of the
Neumann-Neumann method comes from modes which are generated at cross points
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in the decomposition. Without cross points, the iterative Neumann-Neumann method
is convergent and can be made scalable just using a constant per subdomain in the
coarse space. With cross points, one can add the logaritmically divergent modes to
the coarse space to obtain a convergent iterative Neumann-Neumann method, with-
out logarithmic term in the convergence estimate. We also showed that orthogonal
iteration permits already to include such modes numerically, and we are currently
trying to determine these coarse functions analytically.
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A Crank-Nicholson domain decomposition
method for optimal control problem of parabolic
partial differential equation

Jixin Chen and Danping Yang

Abstract A parallel domain decomposition algorithm is considered for solving an
optimal control problem governed by a parabolic partial differential equation. The
proposed algorithm relies on non-iterative and non-overlapping domain decompo-
sition, which uses some implicit sub-domain problems and explicit flux approxima-
tions at each time step in every iteration. In addition, outer iterations are introduced
to achieve the parallelism. Numerical experiments are supplied to show the efficien-
cy of our proposed method.

1 Introduction

In [1], Dawson and Dupont presented non-overlapping domain decomposition
schemes to solve parabolic equation by some explicit flux exchange on inner bound-
aries and implicit conservative Galerkin procedures in each sub-domain. Here, ex-
plicit flux prediction are simple to compute for the unit outward normal vector (see
definition in Section 2). A time step limitation, which is less severe than that of a
fully explicit method, is induced to maintain stability because of the explicit pre-
diction. Recently, an improved strategy was considered in [2] to avoid the loss of
H~2 factor for space variable in the work of Dawson and Dupont. We would like to
mention that another two calculation methods on inner boundaries were studied by
Ma and Sun (see [6] and sequent research papers) based on the integral mean value
or extrapolation. In previous work [3], we have shown that explict/implict domain
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Department of Mathematics, East China Normal University, Shanghai, China; Depart-
ment of Mathematics, Université libre de Bruxelles, Brussels, Belgium. e-mail: cjxh-
mj22344457@163.com

Danping Yang
Department of Mathematics, East China Normal University, Shanghai, China. e-mail: d-
pyang @math.ecnu.edu.cn



2 J.Chen and D.Yang

decomposition method in [2] could be applied in optimal control problems governed
by partial differential equations. The main goal of this paper is to develop the cor-
responding results for second order procedures based on the analysis and schemes
designed to solve single PDE in [4].

2 Model problem and optimality condition

We consider the following distributed convex optimal control problems

T
. ) )
subject to
oy—Ay= f+u, in Q, 0<t<T;
y=0, ondQ, 0<t<T, ?)
Y =Yo, in _(27 l:07

where u € ¢ is the control and " is a convex admissible set for control, y is
the state variable, y,; is the observation, y is the initial function. Fix V = Hé (Q)
and U = L?(Q). In the following, we will write state space % = {y € L>(0,T;V);
y: € L2(0,T; H~'(Q))} and the control space % = L?>(0,T;U). In addition, X is a
closed convex set in U and .#" = L*(0,T;K) is a closed convex set in the space % .

2.1 Optimality Condition and discretization

We use standard notation for Sobolev spaces. Define A(u,v) : V xV — R to be a
bilinear form satisfying

A(u,v) = (Vu,Vv) VuveV. 3)
Then the optimal control problem can be transformed into optimality condition in

the following lemma:

Theorem 1. A pair (y,u) in W X J is the solution of (1)-(2) if and only if there is a
co-state p € W such that the triplet (y,p,u) in W x W x X satisfies the following
optimality conditions:

(aty,w)—FA(y,w):(f—Fu,w), VWGV; (4)
y\z:o =)o,
—(9p,q) +A(q,p) = (y—Y4,9), VqEV; )
P|t=T =0;
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T
/0 (u+p,v—u)>0, Yvex. (6)

Here only the case K = {u > 0} are considered. Therefore, the third inequality in
the optimality conditions is equivalent to

(u+p,v—u)>0, Vvek, 0<t<T. @)

In general, for time-dependent optimal control problems, optimality condition,
which is a large scale of nonlinear coupled system with respect to time and spacial
variables, contains forward and backward PDEs with the variational inequality un-
der consideration. It is very difficult and challenging to solve directly this non-linear
system. Domain decomposition method, which could save huge time in calculation
by solving the question at the same time, is especially suitable for this kind of com-
plicated problem. To use domain decomposition method, we divide 2 into many
non-overlapping sub-domains {€;}/_, such that Q = J/_, Q;. Set I} = 0Q,\0Q
and I = J'_, I;, which is the set of inner boundaries of sub-domains. We recall
some definitions which are necessary for deriving the discrete form of (4)-(6). In-
troduce

(x=2)/12, 1<x<2,
—5x/44+7/6,0<x<1,

o(x) =1 5x/4+7/6, —1<x<0,
—(x+2)/12, —2<x< -1,
0. x| > 2.

For some H > 0, define
o(1) :H*‘(p(g), TR

where H is the width of the local averaging interval, which plays an important role
for stability of explicit/implicit scheme. Following Dawson-Dupont’s idea, we do
not use the exact normal derivative along inner boundaries. A proper approximation
is (see [1, 2]):
2H
B(y)(x) = — . o' (t)y(x+nr)dr, xe[NI;, 1<i<j<I  (8)

From definitions above, we note that function v has a well-defined jump

V](x) =v(x")—v(x"), VxonIl ©)
where
v(xF) & lim v(x+1vr) (10)

Make a time partition: 0 =10 < ¢! < ... <N =T and set Ar* =¢* —¢*! and

At = 1r<naxNAt”. For simplicity, we may take At" = At for n =1,2,...,N. For a
<n<

given function g(x,1), let g" = g(x,#") and
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5 a8 —8" L _ g +g!
W= T2
g"*% = zg"*% _g‘”*% g’”% = zg’l*% _g”+%_
Fori=1,2,...,1, denote Mih C V be the corresponding continuous piecewise linear
finite element space associated with conforming trangualtion ﬂih. Let M" be the
subspace of V such that w;, € M" if and only if wy|q, € M! for each 1 <i <.
Similarly, we can define piecewise constant finite element space U C U for control
variable u. Let K"V = K (U’ . Then the discrete form that we want to solve is:

YO=yo; Y'=yo+Ar(f'+Ay+U%; Y*=yo+241(f+ Ay +U°);
(dY"V)+AY"2,V) — (BEI"2),[V])r — (B(V),[F"~2])r

P |

— (140" 2 V), YV eEM!, n=34,....N;

(an
PN =0; PVl=Ar¥V —y)); PVTE =241V —yY);

— (P2 V)+ AV, P2 — (B(P2), V) — (BV),[P"3)r  (12)
:(Y”_éf)ﬁ_%,V), VVveM' n=NN-1,...3;

(0" 14+ P"3,7""2 (" 2)>0, VZEK"W n=34,.. N; (13)
U° =max{0,—P°}, U'=max{0,—P'}, U?=max{0,—P*}. (14)

We see that the original optimal control problem (4)-(6), which is normally large
in size, is now decomposed into a set of subproblems with much smaller sizes. In
fact, discrete solution of (11)-(14) does not always exist. One could use contraction
mapping principle to ensure the existence and uniqueness of system. Taking the
limitation of the length into consideration, we will give a rigorous analysis on this
and convergence of the following iterative algorithm in a forthcoming paper [5]. In
addition, a priori estimates will also be included.

2.2 Parallel iterative algorithm

We note that discrete system (11)-(14) is still a nonlinear system of a forward sys-
tem for the state variable and a backward system for the co-state variable, which
are coupled by the control variable. We introduce outer iterations to decouple the
system. Thus, the proposed algorithm could be performed in parallel once domain
decomposition is used. Then, fully parallel iterative algorithm is formulated as fol-
lows:
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PARALLEL DOMAIN DECOMPOSITION ITERATIVE ALGORITHM (PDDIA)

Step 1. Given initial approximation {U} i,V:l c U and Y° € M". Take the
€ > 0as atolerance and set k := Q.

Step 2. Update {Yk’:q}ﬁ:':O C M" in parallel on each Q; for 1 <i<I:

Y2, =Y v =Y+ Ar(fP + AYY + U); i = Yo+ 241(f0 + AYY + UP);
3 n n—l An,l

(atYI?Jrl’ )+A( k+12av) ( (Yk+12)7[v])r - (B(V)v [Yk+12])r

= (f”’%JrU,?_?VL VVveM' n=34,.. N
(15)

Step 3. Update {P,f‘H}Q/:O C M" in parallel on each Q; for 1 <i<I:
Py =0; B

Nt =Ar(YN =y PR =240(YN —yl));

~@RV) AL Yo BE V- BO).E D a6

5 _5
= -5 Z,V), VVveM', n=NN-1,...3;

ol
Step 4. Update {U;U 1 }I,Y:l C UM such that

—nf% —nf% 5= 3
Ui = (1-p)U; *—=pP. ,
2 n=34,...,N; (17)
_nfé _ /1UU”7%
k1 =€ k4

where p is a constant with 0 < p < 1 and Q" is the projection from U™ to K"V .

Define U,9+l, Uk1+1 and Uk2+1 such that

0 0 1 1 2 2
Uk+l = max{O, _Pk+1 }’ U1 = max{O, _Pk+1}> Ui = maX{O’ _Pk+1}7
(18)

Step 5. Compute the iterative error:

N =

1
_n,, _”77 =Nn— =N— 7
eps= ) (Il0; * -0 ||L2 R LA A ||L2 yHIB * =P e

n=0

If eps < €, then stop the iteration and output

Ut=Up.,, Y'=Y,, P"=F,, n=0,1,2,...,N. (19)

Else set k := k+ 1 and return step 2 to restart new iteration.
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Compared to first order scheme proposed in [3], the computation on I requires

explicitly the value of three-level solutions, while only little computational cost will
be added. We also remark that the algorithm PDDIA is fully parallel.

3 Numerical experiments

In this section, we test the performance and convergence of the proposed PDDIA
with respect to the exact solutions:

y = sin(27x) sin(27my)t,
p =sin(27x) sin(27wy)(T — 1),
u = max(—p,0),
d
Ya=y+ al +Ap,
Y

= —u+ 22— Ay.

f u+ 9 y

Let 7 = 0.5. Domain Q = [0,2] x [0,1] is partitioned into two uniform non-
overlapping areas with the inner-domain boundary are I' = {1} x [0, 1]. The mesh
in the x-axis and y-axis varies uniformly from 1/36, 1/49, 1/64 to 1/81 in each
sub-domain, respectively.

Table 1 L?(0,T;L%(Q))-norm error for PDDIA (r = 1)

Grids y—Y order u—U order p—P order

36x36 1.625%x 1073 7.324 x 1073 1.597 x 1073

49 x 49 8.770x 107* 2.00 5.382x 1073 0.99 8.473 x 10™* 2.06
64x64 5294%107* 1.89 4.153x 1073 0.97 5.020 x 10~* 1.96
81x81 3.376x10~% 1.91 3.283x 1073 1.00 3.129 x 104 2.01

For domain decomposition, we set At = 0.1k and H 2 = rh to balance error accu-
racy, where parameter r is a constant. The algorithm stops after that error of adjacent
iterative step defined in step 5 of the algorithm is less than 107°.

In all of the numerical tests, the state variable y and co-state variable p are ap-
proximated by using piecewise linear functions while control solution u are treated
with piecewise constant functions. Compared to the scheme proposed in [3], the
number presented in Table 1 to Table 3 are the sum of average value of two neigh-
bouring layer, which is a good approximation for exact solution evaluating at the
middle of two adjacent time layer. We present numerical simulations in Table 1 for
r = 1. The L?>-norm error of the numerical solutions are listed in Table 2 for r = 4.
We present the corresponding results when r = 9 in Table 3.
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Table 2 L?(0,T;L?(£))-norm error for PDDIA (r = 4)

Grids y—Y order u—U order p—P order

36 x 36 4.835x 1073 8.069 x 1073 4.856% 1073

49 %49 2.525%x 1073 2.11 5.654 x 1073 1.15 2.523 x 1073 2.12
64x 64 1.389x 1073 2.24 4258 x 1073 1.06 1.379 x 1073 2.26
81x 81 8.077x107* 2.30 3.325x 1073 1.05 7.952x 10~* 2.34

Inferred from the tables, we can see that the error of the state variable y and co-
state variable p are the second order accuracy with respect to the time and space
sizes, whereas the error of the control variable u is only first order to the spatial
variable because of the modeling space.

Table 3 L?(0,T;L?(2))-norm error for PDDIA (r = 9)

Grids y—Y order u—U order p—P order

36 x36 1.939 x 102 1.588 x 1072 1.964 x 1072

49 %49 1.173%x 1072 1.63 1.006 x 1072 1.48 1.186 x 1072 1.63
64x64 7.137x 1073 1.86 6.623 x 1073 1.57 7.202x 1073 1.87
81 x 81 4.429x 1073 2.03 4.678 x 1073 1.47 4.453 x 1073 2.04

In addition, we could get a brief relationship about the A¢-H constraint. Because
one can take more larger H than & for keeping the optimal order accuracy for the
spatial variable, the constraint Az = O(H?) is less severe than that for fully explicit
algorithms.

4 Conclusion

In this paper, an efficient domain decomposition algorithm for an optimal control
problem governed by a linear parabolic partial differential equation has been pro-
posed. The algorithm can solve coupled optimality condition accurately and effi-
ciently based on the non-overlapping domain decomposition scheme given in [4].
The efficient calculation strategy on the inner boundaries and the outer iterations en-
able excellent extensibility and usability in parallel. Because of the implict/explict
strategy, it is necessary to preserve stability from the explicit prediction, but less
severe than that for fully explicit algorithms. Further, second order convergence in
time allow us to use larger time step in calculations.
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Partition of Unity Methods for Heterogeneous
Domain Decomposition

Gabriele Ciaramella and Martin J. Gander

1 Heterogeneous problems and partition of unity decomposition

We are interested in solving linear PDEs of the form
Lu)=finQ,u=g ondQ, (1

where Q is a bounded domain in RY withd = 1,2, .% is a linear (elliptic) differential
operator, f and g are the data, and u is the solution to (1). The weak form of (1) with
a Hilbert space (V,(-,-)) of functions v: Q — R is

a(u,v) =£L(v) Vv €V, withu=gon dQ, 2)

where Vo :={veV :v=00ndQR}, a:V xV — R is the bilinear form corre-
sponding to the operator ., and ¢ : V — R is the linear functional induced by f.
We assume that (2) has a unique solution u € {v € V : v=gon dQ}, and that u
is “heterogeneous”, behaving very differently in different parts of Q. Typical ex-
amples are advection-diffusion problems, where there are advection dominated and
diffusion dominated regions (subdomains), and the boundaries in between are not
clearly defined, see [8, 10] and references therein. Apart from the y-method [6, 1],
there are no methods to determine such subdomain decompositions, and our goal is
to present and study a new such method. We thus introduce (see [18, 11])

Definition 1 (I\Embership function). Let Q2 Ck R be a set. A membership function
@isamap @ :Q — [0,1], and its support S C Q is S:={x € Q : ¢(x) #0}.

Given two membership functions ¢y, ¢, : Q — [0,1] that form a partition of unity on
Q, @1 (x)+ @2(x) = 1 for all x € Q, their supports provide then a domain decompo-
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sition Q = supp@; Usupp@,. We introduce the approximation uzy 1= @yu; + @ us ~
u, where u; and u, represent two different possible behaviors of u, and we assume
that ugy = g on dQ. We proceed as follows to define the spaces that ugy, u; and uy
are to be sought in: first, we introduce two approximate problems,

gl(ul):fl inﬂ,@l(ul,g):g, and D%(Mz):fzinﬂ,@z(uz,g):o. (3)

Here .Z; are approximation operators of ., f; are approximations of f, and %, are
operators to define the boundary conditions of (3), see Section 3 for concrete exam-
ples. The function g represents a control and belongs to an appropriate Hilbert space
W. Notice that g is different from the actual boundary data g: the latter is defined
on 9, while we will define the former only on a subset of dQ. We assume! that
(3) (left) is uniquely solvable in V for any g € W and (3) (right) has a unique solu-
tion up € V. To reformulate (3) (left), we introduce two operators A : V — V* and
Bz : W — V*, such that (3) (left) becomes Au; = Bgzg + f1. Notice that B represents
the boundary conditions of (3) (left) and takes into account also g. This problem is
formally solved by u; = A~'Bzg+A~" fi, where A~ is well defined if (3) (left) is
well posed. Now, we define the spaces V; :={v €V :v=A"1(Bzq+ f1),q € W},
and V, := {up}. Here V) represents the space of all possible solutions to the first
problem in (3) generated by all the possible (control) functions in W, while V,
is a singleton containing only the unique solution u, to (3) (right). Finally, we
use the definition of a “partition of unity method” space (PUM-space [2, 13])
Veum = @1V1+ @V CV, where ¢, ¢» are membership functions. Vpyy, Vi and Vo
are the spaces that the approximations u,,4, #; and u, have to be sought in. In particu-
lar, for the approximation u4, the functions ¢, ¢, and g have to be computed. These
are defined as solutions to optimal control problems, as described in Section 2. Here
we need to remark that our approach could be computationally expensive. However,
it is motivated by applications in astrophysics governed by hyperbolic equations like
the Boltzmann equation. In many cases, like for supernova explosion, physical phe-
nomena are modeled using two different (limiting) regimes. However, this would
require an a-priori knowledge of the transition regime; see, e.g. [8, 3, 11] and ref-
erences therein. This is exactly the role of the partition of unity functions obtained
by our computational framework. In practice, one could use our computationally
expensive approach to obtain the partition of unity functions for one representative
case and then reuse them (as approximations) in a domain decomposition fashion to
compute approximate solutions of other cases of interest.

! This specific approximation is motivated by asymptotic expansion techniques providing in gen-
eral two problems, one that is uniquely determined and a second one that is determined up to some
constants for asymptotic matching [15].
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2 Optimal control approaches

To compute ¢;, ¢, and g, we embed the PUM formulation into an optimal control
framework. We begin by inserting u,, into (2) and obtain the bounded linear func-
tional r : V — R defined by r(v) := a(@1u; + @auz,v) — £(v), where v € V. In the
case that v= @w and v = @ow with w € V, we get the functionals

ri(w) :==r(Qjw) = a(@iui + Qruz, @jw) —L(@;w) VYweV, for j=1,2.

Sincew eV i—r j(w), Jj = 1,2, are bounded linear functionals, they are elements in
V*, and by the Riesz representation theorem [7], there exist R; and R, in V such that

(Rj,v) = a(@iu1 + Qu, @jv) —L(@jv) WweVy, j=1,2, )

where we used V), since uyy is exact on d2 and thus R and R, must vanish there.
Now, we define ¢ := ¢; with ¢, = 1 — ¢, and recall that ||r;||y+ = ||R;||v. Minimiz-
ing the norms of the residuals ||R;||y leads to the optimal control problem

. 1 » 1 2, O 2 By o2
Ri,R = —|R ~|IR = =
o minJ(R1Ra.g,9) 1= 5 IR+ 5 IRl 5 ol + S sl

s.t. (R1,v) =a(Qu; + (1 —@)uz,ov) —L(@v) Vv eV, (3)
(R2,v) = a(Qui + (1 = @)ua, (1= @)v) = L((1 = @)v) Y eW,
Auy =Bgg+fi,g€eW,ump eV, eV, 0<p<lae in,

where a, 8 > 0 are two regularization parameters used to tune the cost of ¢ and g,
and fi is the same approximation to f introduced in (3).

Solving (5) by an iterative procedure [5, 17] requires at each iteration to solve
the two equations (4) for R; and R;, and (3) for u;. A less expensive optimal control
problem is obtained by summing (4) for j = 1,2, and we obtain with R := R; + R,

(R,v) = a(@ui + (1 — @)uz,v) —£(v) Vv W, (6)

which is a Petrov-Galerkin type equation that we could have obtained directly ap-
plying a Petrov-Galerkin method to (2) using Vpya and V as trial and test spaces.
Using (6), we get the less expensive optimal control problem

1 o B
in J(R =2 |IRIy+ = lelly + = gl
pom (R,8.9) 2|| v+ > lolly + > llgllw

s.t. (Ryvy =a(ou;+ (1 —@)uy,v)—~L(v) YveVy,
Auy=Bzg+fi,8eEW, eV, 0V, 0<p<1lae. inQ.

)
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Fig. 1 Example of a boundary decomposition dQ2 = 92| U d ;.

3 Optimal control for elliptic boundary-layer problems

As main test cases we consider elliptic problems of the form
Z(u):=—pAu+a-Vu+cu=finQ, u=g ondQ, )]

where Q is a bounded domain in RY, for d = 1,2, g € C(dR), f is sufficiently
smooth, and the components of a are assumed to be strictly-positive. The assump-
tion on a is restrictive, but it simplifies the presentation below and can be relaxed.
The corresponding weak problem is to finda u € {v € H'(Q)|v =g on 02} such
that

a(u,v) :z/Q,uVu-Vv—t-a-VqurcuvdX:/_vadXZ:é(v) Wy € H} (Q).

We also assume that €2 is such that the boundary dQ can be decomposed into dQ =
001 UJdQ,, where the intersection .02 N d €2, has a non-zero measure, as illustrated
in Figure 1. To obtain uzy = @u; + (1 — @)uy ~ u, we define I' := dQ \ dQ2; and
introduce the operator .7 := — A +c. Then, as in (3), for any choice of the control
ge Hé (I') the corresponding approximate problem for u; is

/uVul-Vv—i—culvdx:O W € H} (),
@ )
u € {WGHI(.Q)|w:§0n 0Q,w=g+gonl, t(w) €C((9.Q)}7

where 7 is the trace operator on d€. Notice that we have chosen f; = 0. As be-
fore, we introduce the operator A : H'(Q) — H~'(Q) defined as (Au,v)y 1 g1 ==
Jo uVu-Vv+cuvdx for all v € H} (), and the operator By : H} (I') — H'(Q)
such that v — (Bzg)(v) is a bounded linear functional in H~'(£2). The operator By
represents the Dirichlet boundary conditions of (9). Au; = Bgg is then equivalent to
(9). The corresponding set V; is given by

Vi={veH'(Q) : Av=Bzq forany g € H} (") }.
Now, consider the operator .45 :=a-V +c and f, = f. The problem for u; is then

fg(uz):&Vuz—i—cuz:fin Q, u2:§0n BQQ, (10)
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which we assume uniquely solvable in H'(2)NC(Q). Notice that (10) is a pure
advection problem and the subset d€2; is given as the set of points where the char-
acteristic curves enter the domain . This is the main assumption we make on 9,
for the problem (10) to be well posed. The set V, contains only the solution to (10),
i.e. V3 = {up}. The approximation u,, = u is then obtained as uzy = @ u; + Qauz,
where the membership functions @; = @, @ = 1 — ¢ € H'(Q) form a partition of
unity, and ¢ is such that

{1} ifxeaQ\on,,
e(x)€{[0,1] ifxeaQ NIy, (11)
{0} ifxeTl,

with 7(¢) € C(d Q). Notice that this definition of ¢ makes uyy exact on the bound-
ary 0Q, t(uqq) = T(Pru1 + pru2) = g.

In what follows, we study the control problem (7) ((5) would have a similar
structure) to optimize ¢ and g for computing the approximation iy, to the solution
to (8). In particular, we first show well-posedness, and then we derive the first-
order optimality system. We consider directly a 2-dimensional problem (d = 2),
since the analysis of the 1-dimensional version is simpler and relies on the same
arguments. To define our optimal control problem, as in (7), we consider the cost
functional J(R, g, ¢) := %||R||12_11(_Q) + %H(p”%_ll(g) +g”gH?—11(1‘)' Now, we introduce

the control-to-state maps g — u;(g) and (g,¢) — R(ui(g), ), where u;(g) and
R(ui(g), @) solve (9) and

(R,V>H1<_Q):/Q[,LVudd-Vv—i—a-Vuddv—i—cuddv—fvdx WweHN Q). 12)

Notice that the left-hand side of (12), thatis (R,v)y1(q) = [o VR Vv+RvdXx, is of
a similar form to the left-hand side in (9). These maps are well defined according
to the lemmas below and allow us to define the reduced cost functional J(g, @) :=
J(R(u1(g),®),8, ®) and the optimal control problem

miq;l J(g,9)st.0< ¢(x) <1inQ and (11) holds. (13)
g

For well-posedness of this optimization problem, we need four Lemmas:

Lemma 1. Let z € H' (9Q) with Q C R? convex and dQ Lipschitz. Then the prob-
lem

/uVu1~Vv+cu1vdX:0 Yy € H} (Q) (14)
Q

with uy = z on dQ is uniquely solvable by u; € H'(Q)NC(Q), and there exists a
positive constant ¢ such that ||uy || 1 (o) < cllzll g1 90)-

Proof. To show that there exists a unique u; € C(2), we define w as the har-
monic extension of z in Q. Recalling the embedding H' < C for one-dimensional
domains, we have that z € C(dQ). Therefore, since € is a Lipschitz domain,
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w € C*H(Q)NC(Q); see, e.g., [12]. Now, consider the problem —uAv +cv = —cw
in 2 with v =0 on 9. Since Q is convex, Theorems 3.2.1.2-3 in [14] ensure
that this problem is uniquely solved by v € H*(Q) N H{ (). Since 2 C R?, the
Sobolev embedding H?(Q) — C(£) [7] ensures that v € C(2). Noticing that the
function w + v solves (14), u; € C() and is unique by the linearity of (14). Next,
we show that uy € H' () with [[u1 || g1 (g < ¢llzl| 1 (9q)- Consider the trace operator
7:H'(Q) — H'/2(9Q). Since Q is a Lipschitz domain, by [16, Theorem 3.37, page
102] this operator has a bounded right-inverse t~! : H'/2(9Q) — H'(Q). Now, we
define w := 7~ 'z and note that w € H'(Q). So, if we decompose u; as u; = w +7,
then v must solve in a weak sense the problem —uAvV+c¢v = —(—pAw+cw) in
Q with v =0 on dQ. By the Lax-Milgram theorem we have that the unique solu-
tion is v € H} (L) and there exists a constant C such that Va1 @) < Clwllgq)-
Therefore, u; € H' () and using the decomposition u; = w+v we get ||u; || ;1 @ <
(L+O)Wllg1 ) = (1 —|—C)||’L'_1z||H1(_Q) < K|zl g1 (90)- for some positive constant
K, where we used the boundedness of 71 [16].

Lemma 2. Let ¢ € H'(Q) such that 0 < ¢(x) < 1 a.e. in Q. Then for any function
vEH (Q)NC(Q) it holds that ¢v € H' (Q).

Proof. An application of Theorem 1 in [9, page 247] shows that V(ve) = vVWe¢ +
@Vv. Then a simple estimate of the norm [[V(ve)]|;2(o) allows us to obtain the
result.

Lemma 3. Let {z,}, be a sequence that converges weakly in H'(dR) to a weak
limit7 € H'(0Q), i.e. z, — 7 in H'(dQ). Define the sequence {uy,}, by u1, :=
u1(z,), where uj(z,) solves (14) with uy = z,, on dQ. Then there exists a subse-
quence uy p; that converges weakly in H 1(Q) and strongly in L*(Q) to the limit

i =u(7) eH(Q), ie, Uiy — Uy in H'(Q) and Uy — Uy in L*(Q).

Proof. Since the sequence {z, }, converges weakly in H' (9), it is bounded in the
norm | - || 1(5q)- By Lemma 1, we have that [lu1 |1 (q) < cllzallg(90) < K, for
some positive constant K, and the sequence u; , is bounded in H'(Q). Since H' (Q)
is reflexive, there exists a weakly convergent subsequence Ulp; — @ in H! (Q).
Now, from (14), we have that for any v € H} (Q)

/,uVul,,,j-Vv—l—cul,njvdX%//JVI}]-VV—&—CL%WIX.
Q Q

Moreover, the weak convergence z,;, — 7 and the continuity of the trace operator
T:H'(Q) — H'/2(dQ) [16, Theorem 3.37] implies that Zn; = T(urn;) = (1) =7,
weakly in H'/2(9Q). Therefore, ii; = u; (Z). We conclude by recalling the Sobolev
compact embedding H'(Q) € L*(Q); see, e.g., [7].

Lemma 4. Let {u;,}, be the sequence defined in Lemma 3 such that Uiy — i
(weakly) in H'(Q). Consider a sequence {@,}, in H'(Q) such that 0 < @,(x) < 1
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and @, — ¢ (weakly) in H' () with 0 < §(x) < 1. Then there exist two subse-
quences { @y} j and {u1 »,} j such that @,; — @ and uy ,, — 1y (strongly) in L*(Q),
and for any v € H} (Q)

/QV((pnjuL,,j)~Vv+(pnju1,njvdx%/QV(fﬁﬁ1)~Vv+$171vdx.

Proof. The existence of the subsequences {@,;}; and {uy,,}; such that @,, — @
and uy ,; — w0y (strongly) in L?(Q) follows from the fact that ¢, — ¢ (weakly in
H'(Q)), Lemma 3, and the Sobolev (compact) embedding H'(Q) € L*(Q) [7].
Now, recalling Lemma 1 and according to the proof of Lemma 2 it holds that
V(ulﬁnj (pnj) = u1n;VPn; + Qn;Vuy n;. Therefore, to treat the products of sequences
ﬁl.nijﬁnj, (pnjVuL,,j, and @n;U1p;» WE USE [7, Theorem 5.12-4] to obtain for any
v € H}(Q) that

/QV((pnjul,nj)Ver(pnjul’njvdX:/QMl,njVanjVV+(PnjVM1,nva+(PnjMl,ndeX
—>/ W VOVv+oVi Vv+i (ﬁvdXZ/ V(@uy)-Vv+Quv+u; pvdx.
Q Q

We are now ready to prove that (13) is well posed.

Theorem 1. Ler a, B > 0, then there exists a solution to problem (13).

Proof. Consider a minimizing sequence { (R, ®n,U1.,8x) }n, Where g, is extended
by zero on dQ. Since J is coercive in ¢ and g we have the bounds ||@u|| 1) < ¢
and ||gx|| H00) < c, for two positive constants c,c’; see, e.g., [17]. The reflexivity
of H'(Q) and H'(9Q) ensures the existence of weakly convergent subsequences:
@n; ~ @inH 1(Q) and g, —~ginH 1(9Q). By the Sobolev (compact) embedding
H'(Q) € L*(2) [7], the sequence { @, } converges strongly in L*(2) to @. Since
the set {v € L*(Q) : 0 <v(x) < 1 ae.in Q} is (weakly) closed in L?(Q) [17],
we have 0 < @(x) < 1. Consider now the sequence {u ,}, and the corresponding
subsequence u; »; = uy (g,,j). By Lemma 3, we have that u ,,; — i) = u;(g) weakly
in H'(Q) and uy ,, — i = uy (g) strongly in L*(Q2). Consider the sequence {R, }.
Since R,, satisfies

(Ruyv) 1 @) = / UViugg - Vv+a-Vugg ,v+cuga,v— fvdx Vv e H& (Q),
Q

where ugq, = Quit1 n + (1 — @, )uz, from the Lax-Milgram theorem we have that
[Rull 1 (@) < K(lurnllg (), 1€l (@), where the constant K depends on [|u | 1)
and || @,|| H(@)> Which are bounded. Therefore, R, is bounded as well, and by
Lemma 4, one can show that R, — R=R(ii, @) weakly in H' (). Now, the weak-
lower semi-continuity of J implies the claim [17, 4].

To obtain the first-order optimality system, we rely on the Lagrange multiplier
approach and work in the reduced space of solutions of constraint and adjoint equa-
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tions; see, e.g., [5, 17]. We first recall the control—to;state maps g — u;(g) and
(g,9) — R(u1(g),®) and the reduced cost functional J(g, ®). Then we notice that
its derivatives, for §g € H}(I") and §¢ € H}(Q), are

Dg‘](ga (p)((sg) = <ﬁg+Rg75g>H1 (ry» D(PJ(Wa (p)(6(p): <a(P+R(P ) 5(P>H1 (2)-
15)
Here R, is the solution of the problem

<Rg76g>Hd(F) = <B§6g7A>H*1,H]a (16)

where (,) 1 g1t H71(Q) x H} (2) — R denotes the duality pairing, and Ry is
the Riesz representative of the linear functional

1Yo »—)/ uV[(u1 —uz)8@] - VRdx+a-V[(u; —uz2)8@|R+c (u; — uz) 5@ Rdx.
Q
In (16), A € H(% (Q) is a Lagrange multiplier that solves the adjoint equation
/ VA -Vv+cA vdx:/ uv(ve)-VR+a-V(v@)R+cveRdx, (17)
Q Q

forallv e H(% (Q). Therefore, the first-order optimality system is given by (9), (12),
(17) and (16) together with the conditions [4, 17]

DgJ(g,9)(g) =0,
for all 8g € H}(I"), and for any arbitrary 6 > 0
p="Py, (go— (-)(oc(p+Rq,))7

where Py, is the projection onto V4 := {v € H'(2) : 0 <v(x) < 1 ae. in Q}.

4 Numerical experiments

We present now numerical experiments for the one-dimensional elliptic problem
—Uyu—deu=11n (0,1), with u(0) =0, u(1) =0, (18)
for given u = 0.01, computing ugzy = Q1u; + Q2un, with

—Udyu; =0in (0,1), —duup = 11in [0,1),
and
u(0)=0,u;(1)=g, u (1) =0.

We solve both the PUM and Petrov-Galerkin optimality systems discretized by lin-
ear finite-elements with a projected-LBFGS method with stopping tolerance 5-107>
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——PUM

09
08

u and ugg

pand 1 —¢

0 50 100 150 200 250 300 3% 400 4
x x n — (iteration)

Fig. 2 Comparison of the Petrov and PUM approaches: Left: partition of unity functions ¢ and
1 — ¢. Middle: exact solution and approximations. Right: Decay of the cost functional.

on the (relative) residual norm. The regularization parameters are & = § = 10~7. In
Figure 2 (left) we see that the ¢ and 1 — ¢ obtained by the two approaches are very
similar, and catch well the boundary layer on the left. The small bumps in the right
part (close to x = 1) are due numerical effects and we checked that they disappear
for smaller tolerances. In Figure 2 (middle) the exact solution is compared with the
two approximations u4;, and we see good agreement. In Figure 2 (right), we show
the decay of the cost functional with respect to the number of iterations, and we see
that the Petrov-Galerkin approach converges a bit faster.
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Integral equation based optimized
Schwarz method for electromagnetics

Xavier Claeys', Bertrand Thierry?, and Francis Collino®

1 Introduction

The optimized Schwarz method (OSM) is recognized as one of the most
efficient domain decomposition strategies without overlap for the solution to
wave propagation problems in harmonic regime. For the Helmholtz equation,
this approach originated from the seminal work of Després [4, 5], and led to
the development of an abundant literature offering more elaborated but more
efficient transmission conditions, see [1, 6, 7, 8] and references therein. Most
contributions focus on transmission conditions based on local operators.

In [2, 9, 10], the authors introduced non-local transmission conditions that
can improve the convergence rate of OSM. In [9, Chap.8] the performance of
this strategy was shown to remain robust up to GHz frequency range. Such
an approach was proposed only for the Helmholtz equation, and has still not
been adapted to electromagnetics.

In the present contribution we investigate such an approach for Maxwell’s
equations in a simple spherical geometry that allows explicit calculus by
means of separation of variables. We study an Optimized Schwarz Method
(OSM) where the transmission conditions are based on impedance type
traces. The novelty lies in our impedance operator that we choose to be
non-local. More precisely, it is chosen as a variant of the so-called Electric
Field integral operator (see [11, §5.5]) where the wave number is purely imag-
inary. We show that the iterative solver associated to our strategy converges
at an exponential rate.

1. Université Pierre et Marie Curie, and INRIA Paris, France. claeys@ann. jussieu.fr

2. CNRS and Université Pierre et Marie Curie, Paris, France. thierry@ljll.math.upmc.fr
3. POEMS (ENSTA ParisTech, CNRS, INRIA, Universit Paris-Saclay), Palaiseau, France.
francis.collino@orange.fr
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2 Maxwell’s equations in harmonic regime

As a model problem we consider an electromagnetic transmission problem
stemming from Maxwell’s equations in harmonic regime where the whole
space R? is partitioned in two sub-domains R® = 2, U 2_ with £2_ being
the unit open ball centered at 0, and {2, = R3\ 2_. Denote by n, the vector
field normal to I" directed toward the exterior of §2,,0 = +. With a constant
wave number x > 0, this is written

curl(Ey) —wkHy =0, curl(Hy) +1kEyL =0 in 4,

lim H, . x&—E.|?do, =0,

p—00 BBP| + +‘ P (1)
Y (E) =47 (E) + g, , with v (E) :==ny x (Ex|r x ny),

Y (H) = =y (H) + gy , with v (H) :==ny x H|p,

with B, := {x € R3 |z| < p} and & := x/|z|. In this problem, g.,g,
are given source terms assumed to be supported on I' only. Considering
some invertible impedance operator Z that we shall define in Section 4, the
transmission conditions in (1) can be reformulated as

VH(E) + 2y (H) = 77 (E) = 27, (H) 4 g, + 29y, @
Vi (E) + 2y (H) = v (E) = Zvf (H) — g, + 29

For any tangential vector field v and ¢ = + define the magnetic-to-electric
operator T, (v) := 72(U) where (U, V) is the unique solution to curl(U) —
1wV =01in 2, curl(V)+U = 0 in 2, and 7 (V) = v (and Silver-Miiller’s
radiation condition if ¢ = +). Taking u, = YI(E) + ZyJ(H),0c = £ as
unknowns of our iterative procedure, Problem (1) is then equivalent to

U =As(us) + f,, o=,

(3)
with A, == (T, — 2)(To + 2) 71,
and fi := (Z(gy) £ g,). An optimized Schwarz strategy to solve Problem
(1) now consists in a fixed point iterative method applied to (3), using the
approximation uy = v (E) + 2y (H) = limy, 00 u(in ) where u(f ) follows
the recurrence

ugflﬂ) | 1—=r rAy uf)
WD T AL T | ™

In this iterative method, » > 0 is a relaxation parameter whose effective value
shall be discussed in the sequel.

+ [:;ﬂ . (4)
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3 Separation of variables on the sphere

To study the convergence of (4), we rely on the spherical symmetry of
our model problem, and decompose the fields by means of vector spheri-
cal harmonics. According to e.g. [11, Thm.2.4.8], any tangential vector field
wel(l):={v: I —=C, [|lv)do < +o0, & v(x) =0on I'} can be
decomposed as

+oo
w@) =) Yy Xp (@) +uf X5 (),

n=0|m|<n
; D . 1 m (¢ - D
with X7, = \/WVFYn ;o Xom =X X)L,
where & := x/|z| and V is the surface gradient. Denoting (6, ¢) € [0, 7] x
[0, 27] the spherical coordinates on I', spherical harmonics are defined by

_ |
SN cxa e

where Plnml(t) are the associated Legendre functions, see e.g. [3, §2.3]. The
tangent fields X7 ,,, X7, ,,,,0 < [m| < n yield an orthonormal Hilbert basis
of LZ(I'). The operators T are diagonalized by the functions X}, X§ .
Indeed we have T+(Xj, ,,) = t; . X}, for x = D,C where, according to

Formula (53) in [13],

tﬁ,_ = l/t%,— = +Zu]]ln(’i)/uﬂn(’f)a
0, = 185, =~ () ()

Here J,(z) := \/72x/2 Jy41/2(x) with J,(z) denoting the Bessel function

of the first kind of order n, and H,(x) := /7x/2 Hfllﬁl/Q(:z:) with Hr(ll)(:zz)

denoting the Hankel function of the first kind of order n. The following result
follows from [11, Thm.5.3.5].

()

Proposition 1.
We have Re{ [, wT_(u)do} = 0 and Re{ [, w T (u)do} > 0 for all u €
L2(div, I') \ {0} where L2(div, I") := {v € LA(I"), divp(v) € L*(I') }.

This result is related to energy balance in £2+. With Re{ [, @ 7_(u)do} = 0,
the energy coming in {2_ equals the outgoing energy. On the other hand, in
2, there is energy radiated toward infinity as Re{ [ @ T, (u)do} > 0. A
direct consequence in terms of separation of variables is

Re{t;, .} > Re{t;, } =0 forx=D,c, Vn >0. (6)
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That Re{t;, _} = 0 can also be seen directly from expression (5) since the
J.(2) are proportional to Bessel functions hence real valued. Assuming that
the impedance is chosen so that Z(X}, ) = 25, X}, ,,, for x =D,c and n > 0
where z, . € C, we have

AKX ) = ap 2 X5 with ap = 22— (7)
n

The exponential convergence of the optimized Schwarz method is guaranteed
provided that the spectral radius gogy of the iteration operator in (4) is
strictly smaller than 1,

Qosw = SUD 0n <1, withen:= max [l—rxrifa; o | (8)
First observe that, for any r € (0,1), we have |1 — r + rA| < 1 as soon as
A # 1 and || < 1. Since |[(z —1)/(z + 1)] < 1 if and only if Re{z} > 0,
a necessary condition of convergence is that g, < 1 for each n which boils

down to Re{ty, ,/zn} > 0 for each n, o, x. According to (6), the later condition
holds provided that z} € (0, 400).

4 Non-local impedance operator

Now let us discuss our construction of the impedance operator Z. Compared
to existing literature on optimized Schwarz strategies in the context of elec-
tromagnetics, the peculiarity of the present contribution lies in our choice of
Z that is non-local. We choose

= a/ Go(x —y)u(y)do(y ffvp/ga x —y)divru(y)do(y) (9)

where the kernel G, () := exp(—alz|)/(2n|z|) satisfies —AG, + oG, = 259
in R3, and « > 0 is a parameter whose value shall be discussed later. The
operator given by (9) is a classical object of potential theory that can be
understood as a dissipative version of the so-called Electric Field Integral
operator (EFIE). Defined in this manner, the operator Z is diagonalized by
the X¥%. According to Formula (54) in [13] we have

20 =2] (1)H!, (1) and 2§ = 2], (1) H, (20x). (10)

According to Rayleigh’s formulas, see [12, Chap.10], we have J,, (2z) = (12)"*!

(2710,)"(sinh(z)/z) and H,(1z) = —(x)" 1 (2710,)" (exp(—z)/x). It is
clear from (10) that zp, zS > 0 for all n > 0.

n»n
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Satisfying ¢, < 1 for each n is necessary but not sufficient for (8) to be
fulfilled. We must also verify that limsup,,_,. 0, < 1. Let us study the
asymptotic behaviour of g, for n — oo. First, observe that (5) and (10)
provide explicit expressions for z;; and t; , where x = D,C and 0 = +.
According to [3, §2.4], we have J,(z) ~ z""n!2"/(2n + 1)! and H,(z) ~
—z="(2n)!/(n!2") for n — 400, and these asymptotics hold for both 2 € R
and z € 1R. Plugging this inside (5) and (10) yields, for n — 400,

n , o mn
z o~ —, zp o~ — and t, 9~ —.
n—oo (¥ n—oo N T n—oo K

We also deduce the asymptotics of ¢ , = 1/t; .. From this we obtain

th+/2n ~ /K and t), 4 /2, ~ —wk/a. With (7) we conclude that

nlin;o ap + = +o(a/k) and nl;ngo ay, + = —p(a/K) where () :=

Now we have lim,, oo 0, = max|1—r=+r¢(a/k)|. A natural idea for choosing
the parameters r and « consists in minimizing this quantity. The minimum
is obtained for @ = k and r = 1/2 and we have in this case (note that this
limit does not depend on k)

lim o, =1/V2 fora=&k, r=1/2. (11)
n—00

The control of g, when n goes to infinity is crucial to obtain geometrical
convergence. It cannot be obtained when the impedance operator is a combi-
nation of local operators (with Padé approximants of the true impedance for
instance). The use of non-local and positive impedance operator is the price
to pay to achieve geometrical convergence.

5 Numerical illustration

Below we illustrate our analysis with effective numerical calculation' of the
eigenvalues of the iteration operator of (4), taking systematically o = . In
Fig.1 below, we plot these eigenvalues for k = 10. We see that the whole
spectrum is contained in the unit disc. The values +2 clearly appear as the
accumulation points of the spectrum with no relaxation (r = 1).

For eigenvalues associated to the relaxation parameter r = 1/2, we see
that the accumulation points are located at (1/2,4+1/2) whose modulus is
1/+/2, which agrees with (11). Next, in Fig.2 we show the same plots at
higher frequency x = 100. Once again, the whole spectrum is contained in
the unit disc.

I Matlab scripts are available at: http://gitlab.lpma.math.upmc.fr/IEOSM/Matlab
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Fig. 1: Iteration eigenvalues with k = 10 for » = 1 (left) and r = 1/2 (right)

—0. N .

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Fig. 2: Iteration eigenvalues with k = 100 for r = 1 (left) and » = 1/2 (right)

Finally in Fig.3 we plot the values g, versus the modal index n for k =
10, 30, 100. For low modal indices, it oscillates with growing amplitude until
it reaches a pick located around n ~ x. Then p,, smoothly decays to 1/v/2.
This scenario does not change as k grows.

Although lim,,_,~ ¢, remains independent of «, the spectral radius sup,,~q on
(reached around n = x) does depend on k, and we see in Fig.3 that this max-
imum grows closer to 1 as kK — oo. This suggests us that the values a = &
and r = % may not be the optimal choice.

6 Conclusion

We have shown the convergence of the domain decomposition algorithm based
on a dissipative EFIE transmission condition. How to choose the parameter
« in a more optimal way should be further investigated. Moreover, it would
be worth examining variants of the transmission operator (9). Augmenting
it with additional local terms based on Padé approximants, in the manner of
[6], seems promising.
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Fig. 3: Values of g, versus n with r = 0.5 for k = 10, 30, 100.

Besides, in a finite element context, the use of a non-local operator is ex-
pensive in terms of both CPU time and memory storage. Various approaches
could be considered for overcoming this problem. A possible solution may
consist in truncating the Green kernel so as to (quasi)-localize the operator.
The choice of the truncation and how it impacts the iteration operator should
then be further investigated.

Other extensions of the present work are possible. For non-spherical in-
terfaces, using the approach developed in [2], a convergent strategy would
be obtained by choosing the impedance operator according to (9). This re-
mark also holds in the case of multiple sub-domains, as long as there is no
junction point at interfaces. Our strategy can also be adapted to the case of
piecewise constant material characteristics. For this case also, the theory in
[2] suggests that our method is convergent although, this time, a choice of
impedance operator that varies according to the sub-domains may be more
optimal. Finally the case of fully heterogeneous media seems to be still a
widely open question.

Acknowledgment This work received support from the ANR research
Grant ANR-15-CE23-0017-01.
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Analysis of the shifted Helmholtz expansion
preconditioner for the Helmholtz equation

Pierre-Henri Cocquet', Martin J. Gander?

1 Introduction

Solving Helmbholtz problem numerically is challenging [?] mainly because of the
lack of coercivity of the continuous operator or highly oscillatory solutions. Krylov
subspaces methods like GMRES are still used in regards of their robustness but they
require a good preconditioner! to be fast enough. Among many proposed precon-
ditioners like Incomplete LU, Analytic ILU or domain decomposition based pre-
conditioner, the shifted Helmholtz preconditioner [?, ?, ?, ?] has received a lot of
attention over the last decade thanks to its simplicity and its relevance to heteroge-
neous media.

This paper focus on the recent idea of expansion preconditioner [?, ?] which is
based on the fact that the inverse of the discrete Helmholtz operator can be writ-
ten as a superposition of inverse of discrete shifted Helmholtz operator only. This
is achieved using the Taylor’s expansion, around 8 = 0, of the matrix-valued func-
tion f(B) = (—A, — (1+iB)k?)~!, where A, corresponds to a finite difference dis-
cretization of the usual Laplace operator. The expansion-preconditioner is then de-
fined as the truncation of the Taylor’s series hence converging to the exact inverse
of the discrete Helmholtz operator if the Taylor series actually converges. They also
proposed to compute each inverse of shifted Helmholtz with some iteration of multi-
grid which is known to converge with a number of iterations independent of the
wavenumber (see e.g. [?, ?]). We emphasize that the rate of convergence of the ex-
pansion preconditioner toward Ay L=y (0) is computed in [?] and is given to be a
O(B"). However, the latter does not involves bounds on the higher derivative of f
which can deteriorate the performance of the proposed preconditioner and no addi-
tional analysis is performed.

(1) Université de la Réunion, PIMENT, 2 rue Joseph Wetzell, 97490 Sainte-Clotilde.
(2) University of Geneva, 2-4 rue du Lievre, CP 64, 1211 Geneve, Switzerland,
{martin.gander@unige.ch}{pierre-henri.cocquet@univ-reunion.fr}

! For a linear system Cx =y, a good preconditioner refer to a matrix B for which the spectrum of
B~C is clustered around 1 (see e.g Elman’s estimate [?]).
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The goal of this paper is to give a theoretical insight of the performances of the
expansion preconditioner and to extend its definition to Finite Element discretiza-
tion. We first build the expansion preconditioner using the generalized resolvent
formula and study its performances. We next show, as proved in [?], that it is manda-
tory to have a shift of the order of the wavenumber to get wavenumber independant
convergence of GMRES. This paper ends with some numerical simulations.

2 General analysis of the expansion preconditioner

Let 2 be a convex polygon of R, with d = 1,2, 3. The shifted Helmholtz equation
with impedance boundary conditions is

{ —Au(x) — (K> +ig)u(x) = f(x), x € Q, 0

Oht—inu =0, on 90,

where n is the unitary normal vector directed outward 92, € > 0 is the so-called
shift, and i > O is the impedance parameter. The Helmholtz equation with approx-
imate radiation condition is recovered from (??) by setting € =0 and n = k.

The variational form of (??) is given below

Find u € H' () such that for all v € H'(Q) :
an(u,v) ::/ Vu-Vv— (k2—|—i8)qux—iT]/ uvdo :/ fvdx. )
Q o0 Q
Let 7] be the finite element space obtained with piecewise linear polynomials
Y= {v €6 (Q)|v|r €P forall T € 91} = Span(¢y,---,dn),
where {¢ i }]jv:l is the finite element nodal basis. The discrete problem is then
Find u; € ¥ such that :
ac(ur, ) = | foids. o € . ®)
Q

The latter is equivalent to the linear system A¢z; = b; where u; = F,z; is the Galerkin
solution and
N
Fp:ix=(x1,,xy) € CcN — Zx]'(])j €.
j=1
Denoting by S, M, N respectively the stiffness, mass and boundary mass matrix,

one gets
Ae =S — (K> +ig)M —inN.

We denote by Ag the discrete Helmholtz operator obtained with € =0 and 1 =
k. We emphasize that this matrix is invertible thanks to the impedance boundary



Expansion preconditioner for Helmholtz equation 3

condition. Also, if Dirichlet or Neumann’s boundary conditions are used, we assume
throughout this paper that Ag is invertible.

We now give a generalized resolvent formula whose proof can be done by routine
computations.

Lemma 1. Let A, B € Hom(C") with B invertible and p,z € C be two complex num-
bers in the resolvent set of AB™". Let R(z) = (A —zB) ™! be the generalized resolvent
of A. The following formula then holds

R(p) —R(z) = (z— p)R(z)BR(p)-

Using Neumann’s series, Lemma ?? allow to rewrite the inverse of the discrete
Helmbholtz operator as a superposition of discrete shifted Helmholtz operator.

Theorem 1. The inverse of the discrete Helmholtz operator is given as follows
Agt = L (=g (A m)” | A,
j=0
where the serie converges with respect to the norm x|y = /(Mx,X) = [|Fjx| 12 -
Proof. Lemma ?? applied with A = Ag, B=M, p =0 and z = i€ yields
1 _ coa—lapy 141
Ay = Iy +ieA, M)A,

Note that A;'M = (M~'A¢)~!. Let z € CV such that Agz = Mb for some b € CV.
From the definition of the mass matrix M, the operator Fj, and A, one gets

an (Fuz, Fyz) = (Mb,z) = (thﬁz)ﬁ(.o)'

Cauchy-Schwartz inequality and the next lower bound

|an (Fz, Fyz)| > |7 an(Fyz, Fyz)| = £||th||22(g> +n ||FhZ||i2(aQ)7

show that |z[|,, < |[b[|,;€~', and thus ||eA;'M||,, < 1. Finally, (I; +ieA;'M)~"
can be expanded as a Neumann’s serie and the proof is finished.

Remark 2 The mass matrix is symmetric and positive definite so it admits a square
root M'/2. For any B € Hom(CV), the matrix norm induced by |-||; is then defined
by ||Blly, = ||M'/*BM~'/2||,. This yields

leas M, —e||m'2az 2| el|az ml, <1,

and thus the series from Theorem ?? converges with respect to the 2-norm as well.

Following [?], the expansion preconditioner of order n € N* is defined as a trun-
cation of the Neumann’s serie given in Theorem ??
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EX(n) = (rlzl(—is)f (AglM)H])Ml = (nzl(—is)f (AEIM)j> A7 @

j=0 j=0
The preconditioned problem is thus given as follow
EX(n)A()Zl = EX(I’Z)])] (5)

From Elman’s estimate (see e.g. Theorem 1.8 [?]), the rate of convergence of
GMRES used for solving Cx =y only depend on the upper bound of ||[I—C||,. We
now compute this term for the expansion preconditioner.

Theorem 3. For any shift € > 0, impedance parameter n > 0, meshsize handn € N,
the expansion preconditioner satisfies the following bounds

N (Iy—EX(1)Ag) < et (A;'M),
1+t (A;'M)

¥n>1, N (I — EX(n)Ag) < — ¢ =)
n2 L A = EX(m)Ao) 1—e (Ag'M)

(e (A;'M))",

where A (B) denotes any matrix norm or p(B).

Proof. The first item follows from I — EX(1)Ag = 1—A;'Ag = ieA; 'M. For the
second one, we compute

[—EX(n)Ao = (A, — EX(n))Ao = (Z (ie)f(AglM)f> A 'Ap.

jzn

Note that A;'Ag = I, +ieA;'M and thus A;'Ag and A7 'M commute. Now, using
that ep(A;'M) < ¢ ||A8_1M||2 < 1, we can use Gelfand’s formula to get the con-
vergence of the Neumann series with respect to any matrix norm. Majoring and
expanding using geometric serie then give

N (I—EX(n)Ao) < N (Ig+ieA;'M) (et (A;'M))" Y (e (A7 'M))
j=0
l+e (Ag'M
< e A M)y (as )y
1—et (Ag'M)
Remark 4 The construction of the expansion preconditioner as well as Theorem ??
hold without any changes for high order Finite Element discretization.

The upper bound from Theorem ?? involves only €./ (Ag'M). If the latter is
bounded away from 1, the expansion preconditioner can greatly reduce the number
of GMRES iterations by considering a large enough n.
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3 Wavenumber-independance convergence of GMRES

We show in this section that, as proved in [?], taking € ~ k is mandatory to ensure
wavenumber-independant convergence of GMRES when using an expansion pre-
conditioner. This is done in the next result for two types of meshes: one for which
one has pollution-free FEM? and one for & ~ k2.

Theorem 5. Assume that one of the following assumptions holds

(Al)n ~kand K3h? < Cy holds with Cy small enough.

(A2) N Sk, k> ko for a given ko > 0 and kh+/|k* — €| < Cy holds with Cy small
enough.

Then there exists a constant C > 0 depending only on 2 such that for any € >0
with €Cy < k, one has

Vi1, A (I — EX(n)Ag) < <C2£> ktCoe

k ](—CQS7

where N () = p(.) if (Al) hold and N () = ||.||, if (A2) hold.

Proof. Assume that (A1) hold. Let 2 € C be an eigenvalue of M~ 'A; = (A;'M)~!
and v € CV the associated eigenvector. One has

M 'Agv = (M7'(S—inN) — (K +ie)Iy) v = Av.
Therefore, the spectrum of M~ A, is given by
oM 'Ae) = {A;j+ie|A; e G(M_IA())},

from which we infer that

)
ep(A-'M) = max -
p(4e M) Ajec(M~1Ag) |4 +ig

(6)
Let b € CN be fixed and ¢;, € CV be the solution to Agv, = Mb. Note that ¢, =
Fyvy, € ¥, corresponds to the FEM discretization of the solution to (??) with f =
Fyb. Since f € L*(Q) and Q is assumed to be convex, the solution to the Helmholtz
equation (??) belongs to H%(£). Since (A1) hold, one can apply [?, Corollary 4.4
p-12] to get

IVOull20) Tkl Onll20) S 1 f1l2 @) - Q)
Then (??) shows that

1
Fnvall20) < P bl 2 (@) -

Using [?, Eq. (4.2) p. 24], one has ||F |y 5, ~ h9/? which gives

b
il = lag"am], < 121

2 According to [?] no pollution effect occurs if Kh? < Cp holds with Cp small enough.
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The above estimate holds for any b € CV and thus

1

149" M1, < - ®)

The upper bound (??) proves that, for any u € G(AalM), lu| < k', Since any

A € 6(M~'Ap) can be written as A = 1/u, one gets k < |A|. We finally infer that
there exists C, > 0 depending only on €2 such that

G

p(As'M) < = ©)

Assuming now that (A2) hold allow to apply [?, Lemma 3.5 p.595] that gives the
quasi-optimality of the bilinear form a, on ¥}, with respect to the weighted norm
||u|\%k = ||Vu||i2<m + K2 ””Hiz(ﬂ)' Using this, they proved [?, Lemma 4.1 p. 598]
that there exists a constant C, depending only on 2 such that

|Ag M|, < == (10)

Using now (??) and (??) together with the bound proved in Theorem ?? ends the
proof.

4 Numerical simulations
5 Conclusions
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A finite difference method with optimized
dispersion correction for the Helmholtz equation

Pierre-Henri Cocquet, Martin J. Gander, Xueshuang Xiang

1 Introduction

We propose a new finite difference method (FDM) with optimized dispersion cor-
rection for the Helmholtz equation

Liu:=—Au—kKu=f, inQcCR? (1)

where A is the Laplacian, k is the wave number, and we assume boundary conditions
such that the problem is well posed. The Helmholtz equation has important applica-
tions in many fields of science and engineering, e.g., acoustic and electromagnetic
waves, and obtaining more accurate numerical discretizations has attracted signifi-
cant research interest, see [2, 1, 8, 9, 12] and the references therein.

It is well known that all grid based numerical methods, e.g. finite element or fi-
nite difference methods, suffer from the so called pollution effect, which can not
be eliminated [2], and the wave number of the numerical solution is different from
that of the exact solution, leading to numerical dispersion [7, 6]. To keep the pollu-
tion effect and numerical dispersion under control, classical discretizations require a
very fine mesh, which leads to very large discrete systems, especially when the fre-
quency increases. To reduce the numerical dispersion of the standard 5-point finite
difference scheme, a rotated 9-point FDM was proposed in [8] which minimizes the
numerical dispersion, see also [3, 10, 13, 4] for more recent such approaches. Min-
imizing numerical dispersion is also important for effective coarse grid corrections
in domain decomposition and for constructing efficient multigrid solvers: in 1D it is
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even possible to obtain perfect multigrid efficiency using dispersion correction [5],
see also [11] for an approximation in higher dimensions.

We develop here a new dispersion minimizing FDM for the Helmholtz equation
(1) using as a new idea a modified wave number. Compared with the finite difference
scheme of [8] which minimizes already the numerical dispersion, our new scheme
using the same stencil, but a modified wave number, has substantially less dispersion
error and thus much more accurate phase speed. Our examples also indicate that for
plane wave solutions, our new FDM is sixth-order accurate.

2 Dispersion correction for standard FDM

We first recall the definition of the dispersion relation and some notation. Given an
operator P, e.g. the continuous operator Ly in (1) or any finite difference approxi-
mation for Ly, its symbol is

op(&) 1= e (Pelo). @)
The dispersion relation of the operator P is then defined to be the set
{€ e R?op(&) =0}, 3)

where & = (&}, &) denotes the wave vector. A direct computation using (2) gives for
the continuous operator Ly in (1) the dispersion relation set {§ € R?|E2 + &7 = &%}

For & such that p(&) = 0, the number v = ﬁ is called the (normalized) phase
speed associated with a plane wave with angle 6 given by tan@ = &, /&;. For the
operator Ly in (1), the phase speed is equal to 1 for any angle. For any discretization
scheme, we will consider the phase speed as a function of a dimensionless quantity,
the number of points per wavelength G = i—f, or its inverse 1/G.

For any discretization LZ of Ly, numerical dispersion can be defined as the dif-
ference between the dispersion relation of L; and Lz. The numerical dispersion can
also be evaluated by the difference of phase speed of LZ and 1 for different angles.
A key idea for dispersion correction is to use a different numerical wave number
k in the discretized operator L” to minimize the numerical dispersion [5]. Take for
example the 1D Helmholtz equation

d%u

—o —Ru=f, @)

where the dispersion relation is {& ||| = k}. The standard 3-point FDM of (4) is
(LZ’f[B”)i =h2(2u; — w1 — ui1) — K. &)

Using (2), the dispersion relation of LZ’f‘B is {& € R|2h72(1 —cos(ER)) = K},
which is quite different from { | |£| = k}. In order to make (5) have the same dis-
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Fig. 1 Phase speed curves for 5-point FDM. Left: no dispersion correction. Right: dispersion cor-
rection for 6 = 20°.

persion as (4), it was proposed in [5] to use a different wave number in (5), denoted
by k. Choosing k = |\/2h~2(1 — cos(kh))| implies

{& eR[2h*(1—cos(Eh)) =k} = {£] & =k},

and hence there is no numerical dispersion!
We investigate now if a similar approach can be used for the 2D Helmholtz equa-
tion (1), whose standard 5-point FDM is given by

h,fd5 -2 2
(L Pu)i g = W2 (Aug j— i j — i j— -1 — Ui 1) — KPui (6)

Using (2), its dispersion relation of LZ’f % can readily be computed to be

{& e R2|h™2(4 —2cos(hé)) — 2cos(h&,)) = K2} (7)

We show in Figure 1 (left) the phase speed v/%° we computed using (7) for the
angles 0°,15°,30° and 45° when k = 10. We can clearly see that the numerical dis-
persion increases as we decrease the number of points per wavelength G. Using the
dispersion correction idea from the 1D Helmholtz equation, we can do dispersion
correction as well, but only for a specific direction. Given an angle 0, for wave
number k and mesh size /&, we choose the numerical wave number to be

k(6,k,h) = |\/h*2(4 —2cos(khcos(0)) —2cos(khsin(0)))]. (8)

The 5-point FDM with dispersion correction is then given by

h,fd5

(Lg

) 72
w)ij=h""(4uj—wi1j—uir1j— Ui j—1 — Ui j+1) —ku; j, )
and its dispersion relation is

{& e R*|h2(4—2cos(hé)) —2cos(h&y)) = k). (10)
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Fig. 2 Dispersion relation of operator L, fd5 and fd5-dc with dispersion correction for angle 15°
and G =4 (left) and G = 2.5 (right).

By the definition of k in (8), one can see that the dispersion correction is used to
ensure that the phase speed v/43~9¢ = 1 for the specific angle 0, i.e. there is no
dispersion error in that direction. However, for other angles, we still have numerical
dispersion, as shown in Figure 1 (right), where we did dispersion correction for
6 = 15°, and then computed the phase speed v/43~9¢ for the angles 0°,15°, 30°
and 45° when k = 10. In Figure 2, we show the dispersion relation of L, Lh fds

and Lh/ >, where £ is again the dispersion correction with 8 = 15°. We see that
the dlscrete corrected dispersion relation is much closer to that of the continuous
operator L; than the uncorrected one. However, numerical dispersion still exists, it
is not possible to make the phase speed v/#~9¢ = 1 for all angles using a modified
wave number alone.

3 An optimized 9-point FDM with dispersion correction

To improve dispersion errors, a parametrized 9-point FDM was introduced in [8],
where —A is discretized by a tensor product of a 1D mass matrix with stencil
[(1—a)/2,a,(1 —a)/2]" and the standard second order difference with stencil
[~h=2,2h72,—h7?]T, and the the mass term —k? is discretized by the symmetric

9-point stencil
(I-b—c)/4c/A(1-b—c)/4
c/4 b c/4
(I-b—c)/4c/4d(1-b—c)/4
This leads with o = [a,b, ] and our numerical wave number k to the new 9-point
FDM

(L u)ij = (

ka)”z,J"‘( 2 = k4c)("‘l 1j i1+ i1+ i)
h;+k2' DY (U jt A i1 jo1 F i1 Ui 1)

- (11)
—(
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Computing its dispersion relation {& € R?|(e716); ; (LZ %oy, i =0} gives

(4ah™? kzb) +2(1 —2a _ %)(cos(h&l) +cos(h&,))

(12)
—2(15 + R (cos (h(&1 + &) +cos(h(E1 — &2))) =
For a vector & that satisfies the dispersion relation (12), we define
ng =gl (13)

which is a function that depends on 6. Then the phase speed of the operator Lg’a is

vg‘ = HL"‘ For the phase speed vg‘ to be close to 1, we need that nif‘ is close to k. We
k

thus would need to solve the L? minimization problem!

2T
mip/o (nf(6) —k)*d6. (14)

ak -

Because we can not explicitly compute (13) from the transcendental relation (12),
we propose a different minimization approach based on the reasonable
Assumption 3.1 Given a mesh size h, there exist sets & and &P such that

o Vke X, Vae P, the set of the disperston relation (12) is not empty;
e Given o € &P, the mapping of X to {’r] |k e Y is injective.

Let Z"%: p(0) — ¢(0) be the operator which computes for given p(6), 6 € [0,27]
the solution ¢(0) of

(e—i[p(e) cos(0),p(0) Sin(e)]T-x)i,j (LZ,aei[p(G)cos(G),p(G) sin(@)]T-x)l_’j —0. (15)

Since k2 appears only linearly in the 9-point FDM (11), . %" is easy to compute nu-

merically. In addition, by the definition of n“ in (13) and Assumption 3.1, we have
ﬁh*o‘(nk ) = k. Thus, instead of solving (14), we solve ming. o e v 2”(9’%“(11]3(9)) -
Fh®(k))2d6, which, combined with .F#" “nf) = k, yields

o
ming e [ (k= F" ()20, (16)

where k can be interpreted as a constant function in 6. Using that k does not depend
on 6, the objective function in (16) becomes by a direct calculation

2w . 1 2r 2
/ (k— 7" (k)20 =21 (k- — / Fh%(1)d6
0 27 Jo

1 2 2
+/ T (k 2d9( yh«“(k)d@) :
2w \Jo

' We could also use different norms leading to different optimized dispersion corrections.
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Fig. 3 Dispersion relation of L, fd9-jss and fd9-dc when G = 4 (left) and G = 2.5 (right).

For any fixed o, we can then take k = = 02” F"%(k)d6 to make the objective
function reach its minimum, since the other terms do not depend on IAc, and thus the
minimization problem (16) is after a short calculation equivalent to minimizing the
variance,

: 1 n h,a h,o 2
mmaeﬁ”/o (E/O Fr(k)do — F%(k))*d6. a7

This leads to the following algorithm to compute optimized a* and ke

Algorithm 3.1 (Optimized parameters o* and k* for dispersion correction)
1° Input wave number k and mesh size h;

2° Construct operator F"%* in (15);

3° Solve minimization problem (17) to obtain o*;

4° Compute k* = i 02” Fh (k)de;

5° Output o and k*.

4 Numerical examples

We use a Riemann sum, discretizing 0 in Algorithm 3.1 from 0 to 27 with step size
7/100, and solve (17) using Nelder Mead with initial guess o’ = [1,1,0], which
corresponds to the standard 5-point FDM. We denote our new 9-point FDM with
dispersion correction by fd9-dc, and compare it to the the FDM of Jo, Shin and Suh
in [8] denoted by fd9-jss. The parameters for fd9-jss do not depend on 4 and k and
are given by oo = [0.7731,0.6248,0.3752].

We first compare in Figure 3 the dispersion relation of fd9-jss and fd9-dc
when k = 10. Algorithm 3.1 gives as optimized parameters for G = 4 the val-
ues o = [0.8027,1.0532,0.0002], k* = 8.7725, and for G = 2.5 the values o* =
[0.7662,1.0553,0.0003], k* = 7.2186. We see on the left that both schemes seem
very good for G = 4, compared to the five point schemes in Figure 2, but on the
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Fig. 4 Phase speed curves for fd9-jss (left) and fd9-dc (right) when k = 10.

h fd5 |fd9-jss|fd9-dc
0.05| 1.30E5 |5.41E3|5.35E3
0.1 | 5.57E2 |1.70E3|1.36E3
0.2 [1.28E16|4.37E2|3.77E2

Table 1 Condition number comparison for the linear systems obtained with the different schemes
for varying mesh size when k = 10.

right for G = 2.5 the dispersion relation of fd9-dc is much better, still looking per-
fect for only 2.5 points per wavelength!

Figure 4 shows the phase speed curves vg‘: for £d9-jss and fd9-dc for the angles
0°,15°,30° and 45° when k = 10 as a function of 1/G. We can clearly see that the
phase speed of fd9-dc is much closer to 1 than for fd9-jss (note the different scales).

We next investigate the accuracy in h. We consider the Helmholtz equation on
Q = (—1,1)x (—1,1) with the exact plane wave solution u? (x) = el(kcos(0)x1-+ksin(6)x;)
and Dirichlet boundary conditions. The corresponding numerical solutions of fd9-
jss and fd9-dc are uzd%jss’e and uf,dg*dc’e, and the interpolated exact solution uf on
the mesh with size & by ug »- We then measure the relative error of fd9-jss and fd9-dc
by
0 — gy | " — |

errao—jss(h, 0) = , erriao—de(h,0) = A
ih

lee? |
In Figure 5, we show how the 6 averaged errors

1 27 1 2
erriao_ijss(h) = ﬁ/o erriao—iss(h, 0)d0, errgag_qc(h) = E/o errigo—dc(h,0)do,
behave when /& becomes small, for k = 5,10. We can clearly see that fd9-dc is 6-th

order accurate, while fd9-jss is just second order accurate. We show in Table 1 the
condition number of the corresponding linear systems for the different schemes for
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Fig. 5 Averaged relative errors of fd9-jss and fd9-dc for different mesh size h when k =5 (left)
and k = 10 (right).

different mesh sizes when k = 10. We can clearly see that our new method (fd9-dc)
also reduces the condition number compared to the original FDM (fd5) or the FDM
proposed by Jo, Shin and Suh (fd9-jss).
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Optimized Schwarz methods for
elliptic optimal control problems

Bérangere Delourme', Laurence Halpern!, Binh Thanh Nguyen'

Abstract

The present paper deals with the design of optimized Robin-Schwarz methods
for the algorithm of optimal control proposed in [1]. In both overlapping
and non-overlapping cases, a full analysis of the problem is provided, and is
illustrated with numerical tests.

1 Introduction

Let £2 be a bounded open set of R?, z € L?(§2), and v > 0. We consider the
following elliptic control problem described in [1] (see also [9, Chapter 2])

min /|y(u)—z|2dx+u/ lu|?dz, (1)
Q Q

weL?(0)
where, for a given function f € L?(§2), y(u) is the unique H}(§2) solution to
—Ay=f+4uin 2, y=0ondf. (2)

It is well known that the optimal control u (solution to (1)) is related to the
adjoint state p by u = —L, and (y,p) € H{(£2)? is solution of the coupled
problem

—Ay=f—§ —Ap=y—z (3)

Introducing the new unknown w = y+ %p (see [1]), Problem (3) is equivalent
to the complex Helmholtz problem: find w € H}(£2) such that

University Paris 13, Villetaneuse, France delourme@math.univ-parisi3.fr
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= 1 _Q == — T /=K.
ﬁw gin g=1f ﬁz

In [2], Benamou and Després proposed a Robin’s non-overlapping domain
decomposition algorithm. Let us describe this algorithm (written here also for
overlapping subdomains like in the original Schwarz algorithm). We consider
the case where 2 = R? is split into two subdomains £2; =] — oo, Z[xR and
2 =]— %7 +oo[xR. Here, L is a non-negative parameter that corresponds to
the width of the overlapping zone between (2, and (2;. We denote by n; the
outward unit normal vector to §2;, 9, the normal derivative on the boundary
of ;. Letting \° € HY2(9¢) and ¢ € C, we construct iteratively the
sequences (W} )nen, (WH)nen as follows: for any n € N\ {0}, find w? € H*(£2;)
and w} € H'(§2;) such that

—Aw — (4)

—Aw} — ﬁw? =g in {2, —Awg — ﬁw% =y in 29,
Opy W + Lw = A1 on 98, On,wy + lwy = Op,wi + fwy on 02y,
()

A" = Op, wy + lwy

21

It is easily seen ([1, Theorem 1]) that the problems defining w} and w} are
well-posed if £ belongs to the angular sector A defined by

A = {z € C such that Im(z) < 0, Im(z) + Re(z) > 0}. (6)

Moreover, it is proved in [1, Theorem 2] (see also [2]), in the non-overlapping
case, that the algorithm (5) converges, namely the sequence w} (resp. w%)
tends to w (solution to (4)) in H(£21) (resp. w in H'(§2y)).

The objective of the present work is to find a parameter ¢ € A that optimizes
the rate of convergence of this algorithm. In the case of strongly elliptic
real equation, this problem has been solved in [7] for Robin and Ventcel
transmission conditions. In the former case, explicit values of the coefficients
were given, whereas in the Ventcel case, only asymptotic formulas in terms
of the mesh size are available. Extension to real Helmholtz equations were
given in [6, 8]. Following these approaches, we consider the errors e = w}'—w
and ey = wy —w and we denote by é] and é5 their Fourier transform with
respect to y, with Fourier variable k. It is easily seen that 7' and é5 follow a
geometrical progression: more specifically, there exists two complex constants
a1 and as such that

o on —w(k)la] _ —wir Wk) =L _ e
e =a;o(L,k)"e , 0L, k)=¢e MOFYA w(k) k N

In the previous formulas, . Moreover, here and all over the text, the complex
number +/z corresponds to the square root of z belonging to A. As a result,
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it suffices to minimize the modulus of ¢ (the square root of the convergence
factor) in order to accelerate the convergence of the domain decomposition
algorithm (5). As explained in [7, Section 4], we are interested in optimizing
4 over a bounded interval [kmin, kmax] (i-e. k& € [Kmin, kmax])- In practice, the
interval depends on the geometry of the domain and the mesh size (kpax =
% where h denotes the characteristic length of the mesh). It leads us to
investigate the following homographic best approximation problem (see [7,
Section 4.2], [3] for the name in a time-dependent context): find ¢* € R such
that

0" = inf sup [0(w(k), 0)] (7)

L€C k€ [kmin,kmax]

2 General results of well-posedness

The existence and uniqueness of an optimal parameter £* are direct conse-
quences of the general results of [3, 4]:

Theorem 1 For L sufficiently small, there exists a unique £* € A such that

§* = inf sup [0(w(k),€)] = max  [5(w(k), £%)]. (8)
LeC k€ [kmin,kmax] k€ [kmin,kmax]

Moreover, there exists at least two distinct real numbers (k1,k2) € [kmin, kmax)>
such that

(R = 10k, 0] = [0 lh) £ ()

Proof (Sketch of the proof of Theorem 1). By contradiction, one can verify
that if there exists ¢* € C satisfying (8), then ¢* € A (see e.g. [3, Lemma
4.5] for a similar proof). Then, the existence of £* ([3, Theorem 2.2 and The-
orem 2.8]) results from a compactness argument (k belongs to the compact
set [kmin, Kmax])- Finally, in the non-overlapping case (L = 0), the uniqueness
is proved in [3, Theorem 2.6]. For L # 0 and sufficiently small, the unique-
ness proof results from an adaptation of [4, Theorem 8]. In both cases, the
uniqueness is a consequence of convexity properties and the equi-oscillation
property (9)([3, Theorem 2.5 and Theorem 2.11]).

3 Characterization of the optimal parameter in the
non-overlapping case

Theorem 2 The best parameter £* defined by (8) is given by
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0* = /Omimmae,  0F = VWmin 7 v/Wmax (10)
v/ @Wmin + V Wmax

where Wmin = W(kmin) and Wmax = W(kmax). Moreover, if kmax = 7, 6° and
0% admit the following asymptotic expansion

=1 — 2h1/2Re(f Vfr‘““) + o(h'2), £ = W7V (VA e + o(1)).
(11)

We remark that Formula (10) is the same as in the real positive case (see
[7, Theorem 4.4]). The reminder of this section is dedicated to the proof of
Theorem 2. First, we remark that in the non-overlapping case (and as in the
real case), the equi-oscillation property (9) holds for exactly two points that
are nothing but ki, and kpax (the proof of this result may be done using
either a geometrical argument or a direct investigation of the derivative of
|6(k, €)|? with respect to k, see [5]):

Lemma 1 Let ¢* be defined by (8). Then,

o1 6] = 10 )] = B O (12)

and, for any k €)kmin, kmax|, [0(w(k), €*)] < |0(wmin, £)]-

The previous lemma motivates us to consider the curve of equioscillation I7
defined by

I={t= re'? € A such that [§(wmin, )| = |6 (wWmaxs O)} (13)

so that the optimization problem (8) can then be rewritten as follows: find
¢* € II such that

0 = ?él}[l |5(wmina é)' = ?EHII% |6(wmaX7£)|' (14)

Note that, unlike in the real case, the set II is not reduced to the sin-

gleton {p = /WminWmax}. Nevertheless, /WminWmax still belongs to II.
To continue the proof, it is useful to introduce the perpendicular bisector
A of the segment [Wmin,Wmax|, i.6. A = {z=z+iy € Cst.y=ax + b}
. 2 L2
—Inesiee and b = g Tl For any £ € C, we
also consider the signed distance between ¢ and A, namely the function

) = %\/%M’. Using the intercept theorem, it is easily seen that

where a =

the best parameter £* corresponds to the point of IT for which the distance
between IT and A is minimal:

Lemma 2 The function n : II — R, defined by n(¢) = [6(f,wmin)| =

|0(€, wmax)| s a strictly increasing function of the signed distance d: for any
(€1,02) € IT? such that d({1) < d(€2), n(l1) < n(fa).
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In other words it suffices to study the variations of the distance function d over
II in order to characterize the best parameter ¢. By a standard investigation
of d we prove the following lemma:

Lemma 3 The function d reaches its minimum over II for {* = \/WminWmax -

The proof of Theorem 2 is completed by a standard asymptotic expansion of
0* for kpax large.

4 Asymptotics of the optimal parameter in the
overlapping case

In the overlapping case (L > 0), we are not able to obtain an explicit char-
acterization of the best parameter ¢*. Nevertheless, we are able to compute
its asymptotic behaviour for A small when the overlapping parameter L = h
and kpax = 7,

Theorem 3 Assume that L = h and kyax = 7 -
For h sufficiently small, there exists k* €|kmin, kmax| such that

Lopnax  [8(w, &) = [8(wmin, )] = |8(w(k"), €°)], (15)
E[kmin,kmax]

and, for any k €]kmin, K*[U)E*, kmax], [0(w(k),€*)| < |0(wmin, €*)].

The optimal parameter £* and the corresponding convergence factor §* admit
the following asymptotic expansion:

¢ =h"Y3 ((¢p —icy) +0(1)) and 6 =1—c.ht/3 + o(h/3), (16)

where, introducing Tmin = Re(Wmin) and tmin = Im(wmin ),

2/3
Tmin + ’/‘2 L4 i2 B imin
= min min ’ — _ ,and ¢ = 2v/2¢,. (17
i ( 2v2 ) RV Ve (10

Proof. The proof of Theorem 3 is divided into two main parts. We first con-
struct a formal asymptotic expansion of ¢* that we justify a posteriori. To
start with, we make an 'ansatz’ on the asymptotic behaviour of the optimal
parameter £*. We assume that

0" ~ch™ with a€]0,1] and ¢ =c¢, —ic, (cz >0,¢, > 0).
Then, computing explicitly the derivative of |§(¢, k)|?, we prove that, in this
asymptotic regime, the equi-oscillation property (9) holds for exactly two
points k1 = knin and ko = k,, where k, admits the following asymptotic:
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k. = 21/4(Cl_)1/4h(7a71)/4 + O(h(foéfl)/zl), and

5 ke), ) 1= 4(2e2) V2R T" (3 (et )7 ~ 1 — aper (2Tmin Camin)

cf?
Identifying the previous two expansions leads to
1 ,
a= 3 and \/QCI(Ci + ci) — (€2Tmin — Cylimin) = 0. (18)

Thus, in order to minimize the convergence factor (in this asymptotic regime),
it suffices to find the couple (¢, ¢) satisfying (18)(right) and such that ¢, is
maximal. A direct analysis of equation (18) leads to (17).

It remains to justify the obtained formal asymptotic. For h € (0,1) and ¢ > 0
sufficiently small, let

L = {KE(C, s. t. W13 Uy, 0y) € [co —€,c0 + €] X [—cy—s,—cy+5]},

where ¢, and ¢, are defined by (17). Then, for h sufficiently small (in order to
be able to define k*), let I, = {£ € %, |0(wmin, )| = |d(w(k*, £)|} . Because
I, is closed and non empty, there exists ¢ such that

|6(wmina€il)| = inf |5(wmin7€)|' (19)

Lely,

It is not difficult to prove that ¢ admits the asymptotic expansion (16). The
end the proof of Theorem 3 consists in showing that ¢ = ¢*. This is done by
proving the following lemma:

Lemma 4 (" is a strict local minimum for £ — | R(w(k), €)|| Lo (kmin ke -

Indeed, Corollary 2.16 in [3] guarantees that any strict local minimum of the
function £ — [[R(w(k), £)|| Lo (kuninkmax) 15 the global minimum. Consequently
(" = ¢* and the proof is complete. The proof of Lemma (4) is an adaptation
of the proof of [3, Theorem 4.2].

5 Numerical illustration

Let 2 =]0,7[?, v = 1 and f = z = 0 (hence g = 0), so that the exact
solution is 0. The discretization is done using a standard second order finite
difference scheme. We choose a similar discretization in the x and y directions
(he = hy = h) and we set kpin = 1 and kpax = 7. In the non-overlapping
case, we split the domain 2 into two domains {2; and (25 of equal size:
1 =)0, 7/2[x]0, [ and {25 =]w /2, 7[x]0, 7[. In the overlapping case, we take
2, =)0,7/2[x]0, x| and 25 =|7/2 — h,7[x]0,7[ (i.e. L = h). The domain
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decomposition algorithm is initialized with a uniform (over ]0,1[) random
data \. In the next experiments, we evaluate the numerical (or observed)
convergence rate dn,m (¢, N) defined by

1/2
EN
() = ((2) e =\l E ol (20

EN—-1

On Figure 1, we evaluate dnum (¢, N) for different values of ¢ taking N = 60
and h = 7/80. The red cross corresponds to theoretical optimal parameter
£*: in the non-overlapping case, {* = |/WninWmax While in the overlapping
case, £* is numerically computed. Although the theoretical analysis is done
for a two dimensional unbounded domain, we remark that the theoretical op-
timal parameter £* and the observed optimal parameter are relatively closed.
Moreover, for L = 0, the convergence factor slowly varies with respect to the
imaginary part of ¢ (cf. [5]). Then, Figure 2a presents the evolution of the er-
ror e, with respect to the number n of iterations of the domain decomposition
algorithm for two different values of ¢: ¢ = ¢* and ¢ = £}, where £3 ., de-
notes the numerical optimized coefficient obtained by optimizing dnum (¢, V).
Finally, Figure 2b shows the evolution of 1 — §,um (¢, N) with respect to the
discretization parameter h. The introduction of the overlap perceptibly im-
proves the observed convergence rate (although the asymptotic regime is not
entirely reached in this case).
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Fig. 1: Contour plot of dnum (¢, N) for h = /80, N = 60
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Auxiliary space preconditioners for a DG
discretization of H (curl; Q)- elliptic problem on
hexahedral meshes

B. Ayuso de Dios, R. Hiptmair, and C. Pagliantini

Abstract We present a family of preconditioners based on the auxiliary
space method for a discontinuous Galerkin discretization on cubical meshes of
H(curl; Q)- elliptic problems with possibly discontinuous coefficients. We address
the influence of possible discontinuities in the coefficients on the asymptotic perfor-
mance of the proposed solvers and present numerical results in two dimensions.

1 Introduction

Let Q C R? be a simply connected bounded domain with Lipschitz boundary and
let f € L*>(Q)3. We consider the following H (curl; Q)-elliptic problem
Vx(vWxu)+Bu=f in Q, n

uxn=0 on dQ.

where v = v(x) > Vo > 0 and 8 = B(x) > Py > 0 are assumed to be in L=(R)
but possibly discontinuous, and represent properties of the medium or material:
v is typically the inverse of the magnetic permeability and  is proportional to
the ratio of electrical conductivity and the time step. Problem (1) arises in the
modelling of magnetic diffusion and also after implicit time discretization of
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resistive magneto-hydrodynamics (MHD). In connection with the MHD application
the use of hexahedral meshes is typically preferred over to family partitions made
of simplices [Pagliantini(2016)].

Finite element discretizations using edge elements of the first family
[Nédélec(1980)] are probably the most satisfactory methods to approximate
(1) from a theoretical point of view. Only recently, a new compatible element
(corresponding to an edge element of the second family) has been introduced
in [Arnold and Awanou(2014)]. Discontinuous Galerkin (DG) methods offer an
attractive alternative to conforming FE edge elements [Houston et al.(2005)] and
allow for great flexibility in incorporating the discontinuities of the medium.
For both methods, the condition number of the resulting linear systems de-
grades with mesh refinement and the size of the variations of the coefficients.
Hence, designing a preconditioner able to cope with the combined effect
of the mesh width and of highly varying coefficients turns out to be essen-
tial. For constant coefficients, efficient solvers for FE edge discretizations
have been successfully developed using domain decomposition (DD) and the
Auxiliary Space (AS) method [Hiptmair and Xu(2007)]. For discontinuous coef-
ficients, a non-overlapping BDDC algorithm has been proposed and analyzed in
[Dohrmann and Widlund(2016)], improving previous results in the DD literature,
see e.g. [Toselli(2006)]. Recently, in [Ayuso de Dios et al.(2017)], we have de-
veloped a family of AS preconditioners for DG discretizations of (1), providing
the analysis for simplicial meshes and in the case of cubical meshes when edge
elements of the first kind are used as local spaces. In this paper, we report on the
construction of the AS preconditioners focusing on the case of cubical meshes,
discussing also their performance in the case of jumping coefficients. The proposed
preconditioners rely on H(curl;Q)-conforming auxiliary spaces (as auxiliary
space) and hence is presumed the availability of a (direct) solver for standard
H (curl; Q)-conforming Galerkin discretizations.

2 SIPG Discretization on Hexahedral Meshes

Let .7}, be a family of shape-regular partitions of  into cubes 7. For each T € .7},
let iy = diam(T') and set 1 = maxr¢ 7, hr. We assume that .7}, is conforming and
resolves the piece-wise constant coefficients § and v. (i.e., vy, Br € PY(T) for all
T € 7,).We denote by .7, the set of all faces of the partition; .%; and y,? refer
respectively, to the collection of all interior and boundary faces. Similarly, &, =
&P U éoha denote the set of all edges of the skeleton of .7,; with & and é”ha referring
to interior and boundary edges, respectively. We define the sets:

T(e):={T € T:eCdT}; E(T):={e€é&,:eCIT};
F(T):={feFy: fCIT}; Fle)={feF:eCdf}.

We introduce the (family of) DG finite element spaces
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VP — v e 2 (Q)P:ve#(T), T €T},  M(T)CQT)

where the local space .# (T) of vector-valued polynomials can be of three types:
1. Nédélec elements of first family on cubical meshes [Nédélec(1980)]

M(T) = NNT) = Qo1 gk (T) X Qesem1 (T) X Qpse—1(T), k>1,

where Q¢ ,, ,(T') is the space of polynomials of degree at most £,m,n in each vector
variable.

2. Compatible elements (of second kind) [Arnold and Awanou(2014)]:

M(T) = F(T) == (Pr(T))>+span {[yz(wa (x,2) — w3(x,y)) , zx(w3(x,y) = w1 (3,2)) ,
xy(wi(y,2) =wa(x,2)) ]+ Vs(x,3,2) },

where each w; € P, and s € P, (T) has superlinear degree (ordinary degree ignoring
variables which appear linearly) at most k+ 1, with k > 1.
3. Full polynomials: We set the local space .# (T) = (Q(T))?, and k > 1.

For each choice of the resulting VQG space, the corresponding Hy(curl, Q)-

conforming finite element spaces are defined as:
¢:=VPONHy(curl,Q) = {ve Hy(cur,Q): ve .#(T), T € F}. (2)

For a piecewise smooth vector-valued function v, we denote by v* the traces of v
taken from within 7. The tangential jump, indicated by [[-] ¢, is defined by

[vle:=n"xvT+n xv" on fe.ZF, [v]::=nxvonfe.%

where n™ and n~ denote the unit normal vectors on f = dT+tN € dT~ pointing
outwards from T+ and T, respectively. We will also use the notation

(6u,v). / Oruvdx, vz, =Y /uvds Yu,v € VPO
T, fez, ' f
where 8 € P°(.7,) will be either 8 = v or 6 = 3.

The SIPG-DG method. We consider a symmetric Interior Penalty method (SIPG)
introduced recently in [Ayuso de Dios et al.(2017)] for approximating (1) robustly
(w.r.t the discontinuous coefficients). The method reads:

Find u, € V% suchthat apg(up,v)=(f.v)g VYveVL, (3)
with apg(+,-) defined by

anG (u,v) := (VV xu,V xv) 7 + (Bu, v)7f<{{viu}}y,[[ v]o)z,
—([ulle, fvVx vz + Y ar(v) ) Z (splulle, [vIc)oys. @

T, ecé(T) feF (e
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In (4), the weighted average {{-}}, is defined as the plain trace for a boundary face,
whereas for 7T NIT~ = f € F, is given by

. v

{{u}}y = Y}LUJF +'}/f u with 'y}t = m, V:t = VlTi .

The penalization is defined by 57 := ch;l on all f € %, with some ¢ > 0 and the
mesh function iy = min {hy+,hy-} on f € F7 and hy = hy on f = 9dT NIQ.
The coefficient function (a7 (v))re g, € Po(.7) is defined by

max vy fe.F,

. TeT (e)
or(v) =maxperm {{vit,, with {vB, =1 ecor

vr fef;?

Notice that ar(v) picks the maximum conductivity coefficient over a patch
of elements surrounding 7. In Figure 1 a 2D sketch of such patch is given.
We stress that the weighted average {-}}, together with
{-}},; and the definition of ar(v) ensure robustness
(with respect to the coefficients) of both the approximation
(3) in the energy norm (see [Ayuso de Dios et al.(2017),
T Proposition 2.1], and [Pagliantini(2016), Proposition
e 5.1.1]) and the preconditioners, see Theorem 1 and
[Ayuso de Dios et al.(2017), Pagliantini(2016)] for details
Fig. 1: 2D sketch of the in the analysis. Observe that when the variational for-
patch involved in defini- - myation (3) is restricted to V; in (2), the corresponding
tion of ar (v) . Hy(curl, Q)-conforming discretization of (1) is obtained. In
fact,

ay (,v) = (VW <,V xv)g + (Bu,v)o = apc(u,v) VuveVi.  (5)

We denote by & : VD¢ — (VPG the discrete operator («/u,w) = apg(u,w)
and by A the matrix representation of ./ with respect to a localized “nodal” basis
of Vf G (using any of the choices for .#(T)). It can be verified that the spectral
condition number k(A) is proportional to

h_2 maxy o (V) maxr ﬁT

l’nil’l’r vr minT B’r ’

3 Aucxiliary Space Preconditioning

The Auxiliary Space Method (ASM) was introduced in [Xu(1996), Oswald(1996)]
as an expansion of the Fictitious Space Method [Nepomnyaschikh(1991)] providing
a neat methodology for developing and analysing preconditioners. To describe the
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preconditioners we propose, based on the AS methodology, we first review the basic
ingredients behind the Fictitious Space Method:

(1) the fictitious space: a real finite dimensional Hilbert space ¥, endowed with an
. _ . — = =
inner product 4(-, ), induced operator </ : ¥ — ¥~ and norm ||-|| .

(2) A continuous, linear and surjective transfer operator IT : ¥ — V?G.

By virtue of [Nepomnyaschikh(1991)], an optimal preconditioner for .<7 would re-
sult in an optimal preconditioner for 7. The distinguishing feature of ASM is the
particular choice of # as a product space, including the original space as one of the
components. Here, we set ¥ = Vf G x #, endowed with the inner product

a(v,v) =s(vo,vo) +a, (w,w), Vv = (vo,w), voe VPG wew, (6)

where # is the (truly) so-called auxiliary space and a,, (-,-) is the auxiliary bi-

linear form. We will always take as %" an Ho(curl, 22)-conforming space Vj. In
(6), s(-,-) is the bilinear form associated with a relaxation operator . on VEG.
Denoting by <7, the operator associated with a,, (-,-), the auxiliary space precon-

ditioner operator is Z = .~ ! + II, o %71 oIl where the linear transfer operator
I, : # — V)¢ is the standard inclusion and its adjoint IT?, : V)¢ — # is defined
by a,, (IT; v,w) = a(v,IT,w), ve VP, we #/ . If S € RVN with N := dimV}¢

and Ay € RMW XM Ny .= dim#/, then the preconditioner in algebraic form reads
B=S"!+PA,'PT, ™)

where P € RV*M s the matrix representation of the transfer operator Im,.
We now specify the precise components for the two preconditioners we propose:

1. Natural Preconditioner: We set %' = V{ = VhDG NHy(curl, ) for any choice
of the local space .#(T) and a,, (-,-) is as in (5). Hence, 7, : V§, — (V{)" is self-
adjoint and positive definite. As relaxation operator . it is sufficient to use a simple
Jacobi or block Jacobi smoother.

2. Coarser or Economical Preconditioner: When the local space is either
M(T) = S(T) or #(T) = (Qi(T))? in the construction of the VP%-space, we
consider a second possibility for the AS preconditioner. We take % as

W =W ={weH(curl,Q): wjy € /T, T € 5} CV, V.

As to the relaxation operator, we demonstrate numerically that a non-overlapping
Schwarz smoother is not able to resolve the components in the kernel of curl(#")
and as a consequence an overlapping smoother is necessary. We will show numer-
ically that in the case .#(T) = (Qx(T))?, the resulting AS preconditioner is not
effective, independently of the choice of the smoother and the amount of domain
overlaps involved in its construction. We suspect that this is connected to the fact
that the DG method using .7 (T) = (Qi(T))? is not spectrally correct, while 77 is.

Next result provides the convergence of the Natural Preconditioner.
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Theorem 1. Let B be the auxiliary space preconditioner in (7), with W = V§ and
simple Jacobi smoother on Vf G Let Ay, and A}, denote the set of elements in the
curl-dominated regime and reaction-dominated region, respectively:

Ap:={T€T: h%ﬁr <or(v)}, A,={Te: hzTﬁT >or(v)}.
Then, the spectral condition number of the resulting preconditioned system satisfies
K(BA) < max{1,0(v,B)},

h? ar(v
with ® (v, ) := min{ max TﬁT, max ﬁ—T, max r(v) } .
Ted, Vr = TT'ed, Br Tear'ea] Or(V)
ATNIT'#0 ATNIT'#0
The proof can be found in [Ayuso de Dios et al.(2017), Pagliantini(2016)] as well
as the analysis of the Coarser AS Preconditioner on simplicial meshes. The analysis

of a Coarser AS Preconditioner on hexahedral meshes is still an open problem.

4 Numerical Results

In the following numerical simulations we will restrict to the two dimensional prob-
lem (1) on a square. We set the constant entering in the penalty parameter sy in
(4) to ¢ = 10. The tolerance for the CG and PCG is set to 10~7. In the tables we
always report the number of iterations required for convergence. We refer to the
AS preconditioners by VZ)G — W, or more precisely by the local spaces .# (T) in
the construction of each VhDG and . Since the experiments are in 2D we use the
rotated Nédélec elements of the first family .4/ (T) = %.7; the rotated version
of the space .71 1= #T o + {curl(x?y), curl(xy?), curl(x?), curl(y?)}, and the 2D
full polynomials space Q(T)?. For the Natural AS Preconditioner a simple Jacobi
smoother is always used. For the Coarser or Economical AS Preconditioner we will
specify the smoother used at each time.

Test Cases with Continuous Coefficients. We consider first the constant coeffi-
cient case B = v = 1. As shown in Table I, the natural AS preconditioner is indeed
optimal in all the cases, as predicted by Theorem 1. In contrast, the coarser AS
preconditioner performs optimally for .} — %.7 only if an overlapping smoother
is included. However, the coarser AS preconditioner Q; — %Z.7 is not efficacious
regardless the smoother involved in the construction.

To get some insight on the failure of the coarser AS preconditioner for Q;, we
explore the spectral approximation of the considered DG methods to (1) on Q2 =
[0,71]> with v = 1 and B = 0. The exact eigenvalues are given by n> +m? for n and
m positive integers. In Figure 2 is given the lower part of the spectrum using a DG
discretization based on the three possible choices of local spaces .# (T). As it can
be observed in in Figure 2, the DG discretization based on the full polynomial space
(Q1)?, is not spectrally correct. Therefore, a preconditioner built on an auxiliary
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17 16x16 | 32x32 64 x64 | 128x 128 | 256 x 256
X7 o Unpreconditioned 128 204 376 753 1504
(Q1)? Unpreconditioned 410 815 1454 2796 4554
-1 Unpreconditioned 543 1083 2031 4056 7316
RT -%T o Jacobi 9 9 9 9 9
01-0Q1 Jacobi 22 21 20 19 19
Q1-#7 o: Jacobi | overlapping | 259 | 61 | 471 | 113 | 844|202 | 1622|337 | 2936618
A-RT y: Jacobi | overlapping | 88|18 | 72|19 | 49|20 34120 3619

Table 1: Number of iterations for test case with constant coefficients.

space where the Hy(curl, 2)-conforming discretization is spectrally correct (e.g.
Nédélec elements of the first family) is not effective.
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Fig. 2: Lower part of the spectrum for different DG discretizations: rotated Nédélec elements of
the first family 2.7 (left), rotated .# (center), and the full polynomial space (Q)? (right).

Test Case with Discontinuous Coefficients. We consider now the more challenging
case of B and v both discontinuous following a checkerboard distribution according
to the partition Q; := [0,0.5]>U[0.5,1]> C = [0, 1]>. We define

102 ifx € Q, 1073 ifx € Q,

and B(x) =
1 otherwise, 10

v(x) =
otherwise .

In Table 2 we report the iteration counts of the different preconditioners and in Fig-
ure 3 are given graphically the estimated condition numbers of the preconditioned
systems. As it can be observed in Figure 3 and Table 2, the natural AS precondi-
tioner performs optimally in the presence of discontinuous coefficients, as predicted
by Theorem 1. The coarser AS preconditioner .¥1-%.7 ) is also efficacious in this
case, when using an overlapping relaxation. As regards the (Q)? DG discretization,
the coarser AS preconditioner is totally ineffective.
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8.7 16x16 | 32x32 | 64x64 | 128 x 128 | 256 x 256
RT o-%T o Jacobi 11 10 10 10 10
Q1-0Q; Jacobi 23 22 21 21 20
A-RT : overlapping 24 24 24 25 24
01-%#T : overlapping 69 129 248 425 -

Table 2: Number of iterations for test case with discontinuous coefficients.

Fig. 3: Test case with discontinuous co-
efficients. Condition number vs. number
of elements: .7 DG discretization with
ASM based on rotated #.7( elements
with overlapping additive Schwarz smoother
(black); DG discretization with rotated
AT discontinuous elements and rotated
AT as auxiliary space with pointwise Ja-

—— Q1-RT - Schwarz
Q1-Q1 - Jacobi

10°F | —@—S1-RT - Schwarz|

—=— RT-RT - Jacobi

Condition number
S

10 cobi smoother (blue); discontinuous bilin-

?/.[ ear Lagrangian elements with H(curl, Q)-

10 . - - - i conforming full polynomial auxiliary space
10 10 10 10 10 and Jacobi smoother (orange).

Number of Elements
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Is minimising the convergence rate a good choice
for efficient Optimized Schwarz preconditioning
in heterogeneous coupling?

The Stokes-Darcy case

Marco Discacciati and Luca Gerardo-Giorda

Abstract Optimized Schwarz Methods (OSM) are domain decomposition tech-
niques based on Robin-type interface condition that have become increasingly pop-
ular in the last two decades. Ensuring convergence also on non-overlapping decom-
positions, OSM are naturally advocated for the heterogeneous coupling of multi-
physics problems. Classical approaches optimize the coefficients in the Robin con-
dition by minimizing the effective convergence rate of the resulting iterative algo-
rithm. However, when OSM are used as preconditioners for Krylov solvers of the
resulting interface problem, such parameter optimization does not necessarily guar-
antee the fastest convergence. This drawback is already known for homogeneous
decomposition, but in the case of heterogeneous decomposition, the poor perfor-
mance of the classical optimization approach becomes utterly evident. In this paper,
we highlight this drawback for the Stokes/Darcy problem and propose a more effec-
tive optimization procedure.

1 Problem settings

The Stokes-Darcy problem, a classical model for the filtration of an incompressible
fluid in a porous media [2], is a good example of a multi-physics problem where two
different boundary value problems are coupled into a global heterogeneous one.
The problem is defined on a bounded domain 2 C RP (D = 2,3) formed by
two non overlapping subregions: the fluid domain £ and the porous medium £2,
separated by an interface I'. If the fluid is incompressible with constant viscosity
and density, and low Reynolds’ number, it can be described by the Stokes equations

Marco Discacciati
Department of Mathematical Sciences, Loughborough University, LE11 3TU, Loughborough UK,
e-mail: m.discacciati @lboro.ac.uk

Luca Gerardo-Giorda
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in Q and by Darcy’s law in £2,,. The physics of the problem naturally drives the
decomposition of the domain and, at the same time, imposes interface conditions
across I to describe filtration phenomena. The coupled problem reads as follows:
Find the fluid velocity uy and pressure py, and the pressure p, such that

—V.o(us,ps) =f; in Qy Stokes equations
V-I.If =0 in .Qf
—V-(M,Vpp) =gp inQ, Darcy’sequation 1)
—(npVpp) -m=u;-n onI" continuity of the normal velocity
—n-o(us,ps)-n=p, onI" continuity of the normal stresses
—1-0(us,py)-n=8Eus-7 onI' BIS condition on the tangential stresses

where o(uy, ps) = tr(Vus + (Vuy)? — psl is the Cauchy stress tensor, while f/
and g, are given external forces. The Beaver-Joseph-Saffman (BJS, [1]) condition
does not play any role in the coupling of the local problems. Thus, coupling on I"
can be obtained by linear combination of the first two conditions:

—n~G(Uf,pf)-n—(Xfo-nzpp+(Xf(77prp)~n

()
Pp— % (NpVpy) - n=-n-o(us,pr) -n+ayus-n

Using the interface conditions (2) a Robin-Robin method can be formulated. Such
method requires solving iteratively the Stokes problem in £2¢ with boundary condi-
tion (2); on I" and Darcy’s equation in £2,, with boundary condition (2); on I". More
details can be found in [3].

2 Optimization of the Robin parameters o, and o/¢

Classical approaches in the Optimized Schwarz literature derive, through Fourier
analysis, the convergence rate p(cr, ¢, k) of the iterative algorithm as a function
of the parameters r, &, and of the frequency k, and they aim at optimizing oy and
o, by minimization of p (@, o, k) over all the relevant frequencies of the problem.
This amounts to solve the min-max problem

min max ar, 0y, k), 3
OCf'OCI”GRJr ke[kmimkmax]p( ! v ) ( )

where ki, and k., are the minimal frequency relevant to the problem and the
maximal frequency supported by the numerical grid (of the order of /).
However, when the OSM is used as a preconditioner for a Krylov method
to solve the interface problem, such a choice does not necessarily guarantee the
fastest convergence. Minimising the effective convergence rate (p.rr(0f,0y) =
maxg p (0, 0, k)) does not make the convergence rate automatically small for all
frequencies, and the Krylov type solver can then suffer from slow convergence.
Such an issue can be particularly relevant in the presence of heterogeneous cou-
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pling. In the rest of the section, we first introduce the exact interface conditions,
then present three different approaches to optimize the interface parameters. The
first one is based on a classical equioscillation principle, the second one exploits
the peculiar characteristics of the Stokes/Darcy problem, while the third one aims
to globally minimize the convergence rate for all frequencies.

2.1 Convergence rate and exact interface conditions
The convergence rate of the Robin-Robin algorithm does not depend on the iteration
and, for positive parameters o, &ty > 0, is given by [3]

2‘Ll,fk — O
2prk+ay

“)

I_O‘fnpk‘

Pt 0.b) | e

(As shown in [3], by symmetry we can restrict to the case k > 0.)

The optimal parameters force the reduction factor p (o, o, k) to be identically
equal to zero for all k, so that convergence is attained in a number of iterations equal
to the number of subdomains. They can be easily derived from (4) as

. 1
0™t (k) = 2k ot (k) = —. (5)
Npk

Their direct use is unfortunately not viable: both depend on the frequency k, and
their back transforms in the physical space are either introducing an imaginary co-
efficient which multiplies a first order tangential derivative (a;** (k)) or result in a
nonlocal operator (Og?"““ (k)). The use of approximations based on low-order Taylor
expansions of the optimal values (5) (around k = k;;, for o, and k = kg, for otr)
would not help either, as they would suffer from the same drawbacks (see [3]).

2.2 The equioscillation approach

The convergence rate (4) is continuous, has two positive roots, k; = (afnp)’l and

ko = a,/(245), and a maximum between k; and k», given by (setting & = 24,1,)

28 (0 — ay) + /482 (0 — )2 +48 (21 + 1)

ke =
26(2us + otrotmp)

(6)

The natural approach to solve the min-max problem (3) would resort to an
equioscillation principle, where one seeks for o/ and a, such that

plas? oy kmin) = p o, 07 ki) = p (e, 07 K )- %)
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This approach ensures that all other frequencies exhibit a smaller convergence rate.

Proposition 1. The solution to problem (7) is given by the two pairs of optimal
coefficients (a??i, Oc;?i), i=1,2:

1 1
a?fi:z(Xiﬂ/X?HK)’ aZi=2(—Xi+\/X,-2+4n>, =12, @®

with Y; € R" and X; € R defined as follows:

2 (b (b Y

vi= 2 e (—1) -1 i=1,2, ©)
Mp \a a
1 — Skypink

Xi:mmmwc("l’yiﬂ) i=1,2, (10)
np (kmin + kmax) Z‘U,f

where a > 0 and b > 0 are the positive quantities

1+ 8k2 0
= i o 1 ) s v =) an
+6kminkmax (k* (kmin + k*) + kmax (k* - kmin))) )
b= (1+8k2,.)(1+8k?), (12)
and k. > 0 becomes
k. — 6kminkmax —1 + \/(Skminkmax - 1)2 + 8(kmin + kmax)2 (13)

0 (kmin + kmax)

Proof. We consider the first condition of equioscillation in (7): p (o, Ocp,km,-,,) =
p (s, @y, kmax). With the help of some algebra, we obtain

o — 0f = (Skminkmax — 1) (Np0tr 0y +2p15) (0 (kmin —s—k,,m))*1 . (14)

Substituting (14) into (6) we obtain the expression (13) for k. which is now inde-
pendent of ot and ¢, It can be easily verified that the obtained value of k, satisfies
kmin < ki < kmax S0 that we can proceed imposing the second condition of equioscil-
lation in (7): p(¢ty, @, kmax) = p (0, O, k), that is:

(K2 4 k) (0t — 0p)? + 21 pkkimar (0p 0t )
+1p (ks + Kinax) (1 = Skikinax) (0t — 0y Oy @t
215 (ks + kimax) (1 = 8kickimax) (0t — 1)
—2(1+ 8K2K2 4+ 8 (kmax — k) ?) 0t 0t + 8Pk = 0.

5)

We introduce now the change of variables: X = oy — 0, and ¥ = aro,. We
substitute the expression of X from (14) into (15) to get
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2
y2 <a"’7> Yo¥(a—b)+at — o (16)
2uy Np
where a and b are as in (11) and (12), respectively. Since ki < ki < kjpax, a >0
and we can rewrite (16) as

2
2 oy (P ) 2Ry a7
2y a Np

whose roots are (9). By a simple algebraic manipulation, it can be verified that
b —2a > 0 which also implies that b —a > 0, so that the discriminant of (17) is
positive and both its roots are positive as well: ¥; > 0, i = 1,2. Finally, (10) follows
from (14) and (8) is obtained reversing the change of variables. O

2.3 Exploiting the problem characteristics

From (5), we observe that the product of the optimal values a7 (k) and o;;*“' (k)
is constant and equals 2u7/m,. We exploit such peculiarity of the problem (not
occurring in homogeneous decomposition, see e.g. [S]), and restrict our search for
optimized parameters to the curve

Of oy =2Ur/Np. (18)

Notice that such curve is the subset of the (o, ¢,) upper-quadrant where the zeros
k1 and k, of the convergence rate p coincide.

Proposition 2 ([3]). The solution of the min-max problem

min max p(afa Op, k)
oroL :2”7/ ke[kminwkrrlax]
f %p np

is given by the pair

o — 1 —25Mp Kiminkimax \/( 1 — 20 Mp Kininkimax ) ’ + Zﬂ

np (kmin + kmax) np (kmin + kmax) np (]9)
x 1- 2,ufnp kminkmax 1- 2,ufr’p kminkmax : 2.uf
o, =— + +—
np (kmin + kmax) np (kmin + kmax) np

Moreover, p(a;ﬁ, oy, k) <1 for all k € [kpin,kimax)-
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2.4 Minimisation of the mean convergence rate

The reduction factor along (18) is given by

2ur (n,,ocfkl)2
op,k)=— | —— | . (20)
play.k) Np \2urk+oy

To further exploit the characteristics of the problem, we consider the set
Jfo = {(Xf >0: p(OCf,k> <1 Vke [kn”'n’kmax]}.

Notice that the convergence of the Robin-Robin method in the iterative form would
be ensured only if the inequality in the definition of <7} is strict. From [3] we know
that the convergence rate can equal 1 in at most one frequency, either in &, or in
kimax- When using the OSM as a preconditioner for a Krylov method, the latter can
handle isolated problems in the spectrum (see, e.g., [4, 6, 7]).

In order to improve the overall convergence for a Krylov method, we minimize,
on the set <7y, the expected value of p(af,k) in the interval [kpmin, kmax]:

kimax
E(ay) = Elplar k) = —— [ " plag.k)dk

kmax - kmin Kin

Owing to (20), E(ar) can be explicitly computed: it is positive in &y = 0, and
has a minimum in the point af after which it is always increasing (see [3]). As a
consequence, the minimum a;p "of E (o) is attained in O if the latter belongs to
&y, or in one extremum of <7y otherwise, namely:

min o if 0y < min o
(XfEJZ{f (XfEA(Z{f

' = ar ifoye (1)

max o if &f > max Or.
aredy aredy

3 Numerical results

We compare here the three approaches (8), (19) and (21) considering a test with
analytic solution: wy = (\/H;Tp, Opsx), pr = 2is(x+y—1)+ (3np) " pp =
(—aprx(y — 1) +¥*/3 — % +y) /0, + 2upx. We set Q7 = (0,1) x (1,2), 2, =
(0,1) x (0,1) and interface I = (0, 1) x {1}. The computational grids are uniform,
structured, made of triangles with & = 2_(”2), s > 0; IP»-IP; finite elements are used
for Stokes and P, elements for Darcy’s law; 7, is constant, og; = 1, kyin = T,
kmax = 7/h. The interface system associated to the OSM [3] is solved by GMRES
with tolerance le-9. In Table 1 we report the parameters obtained for various co-
efficients Uy and 1n,. Figure 1 shows the convergence rates versus k for the three
possible choices of & and ), and two pairs of values (17, 1,). The number of iter-
ations for oy and «, at fixed & is computed for two pairs of values (us,7,) and is
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Table 1 Parameters obtained in (8), (19) and (21) for different values of uy, 1, and h = 275,

Ly np oy o! o o oy’ ! a”
1 1 0.27 36.93 0.16 12.33 0.036 56.04
1 le-2 23.00 68.59 991 20.17 5.44 36.75
1 le-4 852.50 157.10 258.19 77.46 217.34 92.01
le-1 1 0.26 4.19 0.15 1.35 0.03 5.48
le-1 le-2 15.71 12.01 4.84 4.13 3.37 5.93
le-1 le-4 613.00 17.02 201.61 992 195.90 10.21

shown in Figure 2. The parameters devised in (8) feature both the smallest conver-
gence rate and the worst preconditioning performance in terms of iteration counts.
Notice also that a}’p " in (21), minimizing the mean convergence rate, always ensures
the best performance in terms of iteration counts. Figure 3 displays the number of
iterations versus & for different combinations of fy and 1): (x;” " consistently ex-

hibits the best convergence properties, in particular when the ratio /7, increases.

=180 1 =1e-2 n=te1 o =te-2

— (8 — (8
- = (19) d - - (19)
08 s (21) 0.8 e (21)

06 i 06|}

Fig. 1 Convergence rates as a function of k for the parameters (8) (solid line), (19) (dashed line),
and (21) (dotted line). Left: uy = 1, 1, = le-2. Right: py = le-1,m, = le-2. h =275,

4 Conclusions

Using the Stokes/Darcy coupling as a testbed for heterogeneous problems, we show
that minimizing the convergence rate of the corresponding iterative algorithm leads
to poor convergence when an Optimized Schwarz Method is used as preconditioner
for a Krylov method applied to the interface equation. On the other hand, taking ad-
vantage of the problem characteristics and minimizing the mean of the convergence
rate provides effective preconditioning.
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Fig. 2 Number of iterations for 1 = 275 and parameters 0ty and @i, as in (8) (squares), (19) (circle)
and (21) (diamond). Left: uy =1, n, = le-2; right: uy = le-1, n, = le-2.
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Fig. 3 Number of iterations versus /. Solid lines refer to (8), dashed lines to (19) and dotted lines
(21). Squares refer to 17, = 1, circles 11, = le-2, diamonds 7, = le-4. Left: iy = 1; right: uy = le-
1. All values obtained for 1, = 1 and py = 1 coincide (left plot), while for n, = 1 and s = le-1
they coincide only when computed using (8) and (19) (right plot).
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Preconditioned space-time boundary element
methods for the one-dimensional heat equation

Stefan Dohr and Olaf Steinbach

1 Introduction

Space—time discretization methods, see, e.g., [8], became very popular in recent
years, due to their ability to drive adaptivity in space and time simultaneously, and
to use parallel iterative solution strategies for time—dependent problems. But the
solution of the global linear system requires the use of some efficient preconditioner.

In this note we describe a space—time boundary element discretization of the heat
equation and an efficient and robust preconditioning strategy which is based on the
use of boundary integral operators of opposite orders, but which requires a suitable
stability condition for the boundary element spaces used for the discretization. We
demonstrate the method for the simple spatially one-dimensional case. However, the
presented results, particularly the stability analysis of the boundary element spaces,
can be used to extend the method to the two- and three-dimensional problem [2].

Let Q = (a,b) CR, I' :=9dQ = {a,b} and T > 0. As a model problem we
consider the Dirichlet boundary value problem for the heat equation,

adu—Au=0inQ:=Q x(0,T),u=gonX:=Ix(0,T), u=uyinQ (1)

with the heat capacity constant o > 0, the given initial datum u, and the boundary
datum g. The solution of (1) can be expressed by using the representation formula
for the heat equation [1], i.e. for (x,7) € Q we have

. - 2
) = [ U=y - [ U (1 =8) 5y s)dyds

: d )
_a/Z‘EU (x_yat_s)g(yjs)dsyds7
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where U* denotes the fundamental solution of the heat equation given by

o N\ (zakaP -
Uf(x—y,t—s) = \4x(t —s) P ac—s) ) 50

0, else.

Hence it suffices to determine the yet unknown Cauchy datum 8,,14‘ y to compute
the solution of (1). It is well known [5] that for uy € L?>(Q) and g € H1/2*1/4(2)
the problem (1) has a unique solution u € H'-!/ 2(Q, ad; — A,) with the anisotropic
Sobolev space

04— ) — {u BV Q) (e ).

In the one-dimensional case the spatial component of the space—time boundary X
collapses to the points {a,b} and therefore we can identify the anisotropic Sobolev
spaces H"*(X) with H*(Z). The unknown density w := dyux € H~/4(X) can be
found by applying the interior Dirichlet trace operator %" : H L1209y — H'/4(X)
to the representation formula (2),

g(x,t) = (Moug) (x,1) + (Vw)(x,1) + ((%I—K)g)(x,t) for (x,7) € X.

The initial potential My : L?(2) — H'/*(X), the single layer boundary integral op-
erator V : H-'/4(X£) — H'/4(X), and the double layer boundary integral operator
II-K:H 1/4(2) — H'/*(X) are obtained by composition of the potentials in (2)
with the Dirichlet trace operator 3™, see, e.g., [1, 6]. In fact, we have to solve the
variational formulation to find w € H~'/4(Z) such that

(Vw,T)5 = <(%I+K)g, Oy — (Mouo,T)y forall T H-VA(E),  (3)

where (-,-)x denotes the duality pairing on H'/4(X) x H~'/4(X). The single layer
boundary integral operator V is bounded and elliptic, i.e. there exists a constant
¢{ > 0 such that

(Vw,w)xz >} Hw||?1,./4(£) forall we H~'/4(Z).
Thus, the variational formulation (3) is uniquely solvable. When applying the Neu-

mann trace operator ¥ : H'1/2(Q, a9, — A,) — H~'/4(Z) to the representation
formula (2) we obtain the second boundary integral equation

w(x,t) = (Myug)(x,t) + ((%I-i—K/)W) (x,t) + (Dg)(x,t) for (x,1) € X
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Fig. 1 Sample BE mesh. reB. T .‘ ]

We consider an arbitrary

decomposition of the space—

time boundary X. Note that

there is no time-stepping
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! |

with the hypersingular boundary integral operator D : H'/*(X) — H~'/4(X), and
with the adjoint double layer boundary integral operator K’ : H~'/4 () —H! /4 (z).
Moreover, M : L*() — H~/4(X).

2 Boundary element methods

For the Galerkin boundary element discretization of the variational formulation
(3) we consider a family {Zy}ycy of arbitrary decompositions of the space—time
boundary X into boundary elements oy, i.e. we have

N
N = U Oy.
(=1
In the one-dimensional case the boundary elements oy are line segments in temporal

direction with fixed spatial coordinate x; € {a,b} as shown in Fig. 1. Let (x/,#,, ) and
(x¢,1¢,) be the nodes of the boundary element 0. The local mesh size is then given

.....

For the approximation of the unknown Cauchy datum w = yi"u € H “1/4(2) we
consider the space S9(X) := span {(p?}?]:l of piecewise constant basis functions

go?, which is defined with respect to the decomposition Xy. The Galerkin-Bubnov
variational formulation of (3) is to find wy, € 52(2 ) such that

1
<VW/1, Th>2 = <(§I+K)g, Th>2 — <MOLto, Th>2 for all 7, € 52(2) . (€))

This is equivalent to the system of linear equations V,w = f where

1
Vh[f,k] = <V(p}97(p?>z, f[f] = <(§I+K)g, (,0?>2 — <1W()I/t0,(,l)?>27 k,(=1,...,N.

Due to the ellipticity of the single layer operator V the matrix V), is positive definite
and therefore the variational formulation (4) is uniquely solvable as well. Moreover,
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when assuming w € H*(X) for some s € [0, 1], there holds the error estimate
[[w— WI1||H—1/4():) < Chl/4+‘v|W|HS(z) .
Using standard arguments we also conclude the error estimate
w=wnll2z) < ch[Wlps(x)

which implies linear convergence of the L?(X)—error of the Galerkin approximation
wy if w € H'(X) is satisfied.

3 Preconditioning strategies

Since the boundary element discretization is done with respect to the whole space—
time boundary X we need to have an efficient iterative solution technique. In fact,
the linear system V,w = f with the positive definite but nonsymmetric matrix V},
can be solved by using a preconditioned GMRES method. Here we will apply a
preconditioning technique based on boundary integral operators of opposite order
[10], also known as operator or Calderon preconditioning [3]. Since the single layer
integral operator V : H~'/4(£) — H'/4(X) and the hypersingular integral operator
D:HY4(X)— H~'/4(X) are both elliptic, the operator DV : H~'/4(X) — H~1/4(X)
behaves like the identity. Hence we can use the Galerkin discretization of D as a pre-
conditioner for Vj,. But for the Galerkin discretization Dj, of the hypersingular inte-
gral operator D : H'/4(X) — H~'/4(X) we need to use a conforming ansatz space
Y, =span {y;} | ¢ H'/4(X) while the discretization of the single layer integral op-
erator V is done with respect to S9(X). Since the boundary element space SY(X) of
piecewise constant basis functions ¢! also satisfies S(X) C H'/4(X) we can choose
Y, = SQ(E). The inverse hypersingular operator D! is spectrally equivalent to the
single layer operator V, therefore the approximation of the preconditioning opera-
tor corresponds to a mixed approximation scheme, and hence we need to assume a
discrete stability condition to be satisfied.

Theorem 1 ([3, 10]). Assume the discrete stability condition

<Thavh> 2
sup o EE) cff 1%l g-1/4(5)  for all T € SH(Z). )

0#v, €Yy, HV11||H1/4(2)

Then there exists a constant ¢, > 1 such that
K (M,;thM,;TV,,) < e
where, fork,{=1,... N,

Vilt,kl = (VoL o)z, Dult.k] = (Dyi,wi)s . Myll,k] = (90, i) 2 -
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Thus we can use C}, = M, thM,;T as a preconditioner for V. Since M, is sparse
and spectrally equivalent to a diagonal matrix, the inverse Mh_1 can be computed
efficiently. It remains to define, for given SQ(E), a suitable boundary element space
Y}, such that the stability condition (5) is satisfied. In what follows we will discuss a
possible choice.

If we choose Y;, = Sg(Z) for the discretization of the hypersingular operator D,
then M;, becomes diagonal and is therefore easily invertible. In order to prove the
stability condition (5) we need to establish the H'/*(X)-stability of the L*(X)-
projection QY : L*(X) — S(X) C L*(X) which is defined as

(O, T 2(s) = W Tn)p2(xy forall 7, € SH(Z).

Following [7], and when assuming local quasi-uniformity of the boundary element
mesh Zy we are able to establish the stability of Q) : H'/4(X) — H'/*(X), see [2]
for a more detailed discussion: For £ = 1,...,N we define /(¢) to be the index set
of the boundary element oy and all its adjacent elements. We assume the boundary
element mesh Xy to be locally quasi-uniform, i.e. there exists a constant c;, > 1 such

that .
— < i <c¢, forallkelI(f)and¢=1,....N.
Cr, hk
In this case the operator Q) : H'/4(£) — H'/4(Z) is bounded, i.e. there exists a

constant cg > 0 such that
||Q2\1HH1/4<2) <c [Vl f1/a(gy forallve H'4(X). (6)
By using the stability estimate (6) we can conclude

(Ths Vi) 12(x)

1
o \|Th||H,1/4<2) < sup for all 7, € S)(X).

N Oyévhesg(z) th||1-11/4(2)

Hence the stability condition (5) holds and we can use Cy, = M, thM,: Tasa
preconditioner for V},.

4 Numerical results

For the numerical experiments we choose Q = (0,1), T = 1, and we consider
the model problem (1) with homogeneous Dirichlet conditions g = 0, and some
given initial datum u satisfying the compatibility conditions uy(0) = up(1) = 0.
The Galerkin boundary element discretization of the variational formulation (3) is
done by piecewise constant basis functions. The resulting system of linear equa-
tions V,w = f is solved by using the GMRES method. As a preconditioner we use
the discretization Cy, e Mh_thMh_ T of the hypersingular operator D with piece-
wise constant basis functions.
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Uniform refinement

The first example corresponds to the initial datum uo(x) = sin 27tx and a globally
uniform boundary element mesh of mesh size 4 = 2%, Table 1 shows the L?(X)-
error ||[w —wp||z,(x) and the estimated order of convergence (eoc), which is linear
as expected. Moreover, the condition numbers of the stiffness matrix V}, and of the
preconditioned matrix C, 1V, as well as the number of iterations to reach a relative
accuracy of 1073 are given which confirm the theoretical estimates.

Table 1 Error, condition and iteration numbers in the case of uniform refinement

L N w—=wall,z) —eoc (Vi) It x(Cy'v) It
0 2 2.249 - 1001 1 1.002 1
1 4 1.311 0.778 2.808 2 1279 2
2 8 0.658 0.996 4905 4 1422 4
316 0.324 1.021 7.548 8 1486 8
4 32 0.160 1.017 11.140 16 1.541 14
5 64 0.079 1.010 16724 31 1.563 13
6 128  0.040 1.006 13470 41 1.590 13
7 25  0.020 1.003  22.053 50 1.615 12
8 512 0010 1.001  32.043 59 1.636 12
9 1024  0.005 1.001  60.957 70 1.777 11
10 2048  0.002 1.000 88.488 82 1.762 11
11 4096  0.001 1.000 125957 96 1.765 10

Adaptive refinement

For the second example we consider the initial datum ug(x) = Se~'sin 7zx which
motivates the use of a locally quasi-uniform boundary element mesh resulting from
some adaptive refinement strategy. The numerical results as given in Table 2 again
confirm the theoretical findings, in particular the robustness of the proposed precon-
ditioning strategy in the case of an adaptive refinement which is not the case when
using none or only diagonal preconditioning Cy = diagVj,.

5 Conclusions and outlook

In this note we have described a space—time boundary element discretization of the
spatially one-dimensional heat equation and an efficient and robust preconditioning
strategy which is based on the use of boundary integral operators of opposite orders,
but which requires a suitable stability condition for the boundary element spaces
used for the discretization. In the particular case of the spatially one-dimensional
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Table 2 Error, condition and iteration numbers in the case of adaptive refinement

L N w—wallpys)  (Va) It k(G It k(G W) It
0 2 1.886 1.00 21001 2 1002 2
1 3 1.637 3.97 32553 3 116 3
2 5 1.272 12.23 5 4055 4 1166 4
307 0.914 34.21 7 3611 6 1156 6
4 9 0.615 92.08 9 3164 8 1149 8
5 11 0.401 11859 11 2945 10 1224 10
6 13 0.267 33826 13 2803 12 121 12
7 20 0.166 62177 20 3524 18 1.197 13
8 31 0.101 1608.08 31 4457 27 1252 12
9 47 0.063 234490 47 5779 32 1574 11
10 74 0.039 614147 74 8348 37 1.692 11
11 114 0.024 8409.92 114 10950 42 1.561 10
12 177 0015 23007.60 173 14.324 47 1716 10
13 278  0.010 27528.30 200 21.094 53 1677 10

heat equation we can use the space Sg(Z) of piecewise constant basis functions to
discretize both the single layer and the hypersingular boundary integral operator V
and D, respectively. This is due to the inclusion S)(X) C H'/#(Z) where the latter
is the Dirichlet trace space of the anisotropic Sobolev space H L1/ 2(Q). In the case
of a spatially two- or three-dimensional domain 2 a conformal approximation of
the Dirichlet trace space H'/%1/4 (X) and therefore the discretization of the hyper-
singular integral operator D requires the use of continuous basis functions. Hence,
to ensure the stability condition (5) we may use the space S}l(Z ) of piecewise linear
and continuous basis functions for the discretization of V and D, respectively, see
[7, Theorem 3.2], and when assuming some appropriate mesh conditions locally [7,
Section 4]. However, due to the approximation properties of S ,11 (X) such an approach
is restricted to spatial domains 2 with smooth boundary where the unknown flux is
continuous.

When using the discontinuous boundary element space S2(2 ) for the approxi-
mation of the unknown flux we need to choose an appropriate boundary element
space Y, to ensure the stability condition (5). A possible approach is the use of a
dual mesh using piecewise constant basis functions for the approximation of V, and
piecewise linear and continuous basis functions for the approximation of D, see Fig.
2 for the situation in 1D. For a more detailed analysis of the proposed precondi-
tioning strategy and suitable choices of stable boundary element spaces we refer to
[2].

An efficient solution of local Dirichlet boundary value problems is an important tool
when considering domain decomposition methods for the heat equation, see e.g. [9]
in the case of the Laplace equation. Moreover, the preconditioning strategy of us-
ing operators of opposite order can also be used when considering related Schur
complement systems on the skeleton, as they also appear in tearing and intercon-
necting domain decomposition methods, see, e.g., [4]. This also covers the coupling
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Fig. 2 Sample dual mesh. ‘ ‘ ‘ ‘ ‘ ‘
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of space—time finite and boundary element methods. Related results on the stability
and error analysis as well as on efficient solution strategies for space—time domain
decomposition methods will be published elsewhere.
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On high-order approximation and
stability with conservative properties

Juan Galvis', Eduardo Abreu?, Ciro Diaz?, and Marcus Sarkis3

1 Summary

In this paper, we explore a method for the construction of locally conservative
flux fields. The flux values are obtained through the use of a Ritz formulation
in which we augment the resulting linear system of the continuous Galerkin
(CG) formulation in a higher-order approximation space. These methodolo-
gies have been successfully applied to multi-phase flow models with heteroge-
neous permeability coefficients that have high-variation and discontinuities.
The increase in accuracy associated with the high order approximation of
the pressure solutions is inherited by the flux fields and saturation solutions.
Our formulation allows us to use the saddle point problems analysis to study
approximation and stability properties as well as iterative methods design for
the resulting linear system. In particular, here we show that the low-order
finite element problem preconditions well the high-order conservative discrete
system. We present numerical evidence to support our findings.

2 Problem and conservative formulation

Consider the equation,

—div(A(z)Vp) = ¢ in 2 CR?, (1)
p=0 on 012, (2)
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2University of Campinas, Department of Applied Mathematics, 13.083-970, Campinas, SP,
Brazil; supported by FAPESP Grant 2016/23374-1.
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supported by NSF DMS-1522663
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where (2 is a two-dimensional domain and A is a (smooth enough) positive
definite symmetric matrix function. See [6] for the case of A being a multiscale
coefficient with high-contrast. Our main interest is to obtain approximate so-
lutions of the second order problem above! with: 1) high-order approximation
(e.g., multiple basis per node), 2) local mass conservation properties and 3)
stable-fast solver.

Our motivations come from the fact that in some applications it is
imperative to have some conservative properties represented as conserva-
tions of total flux in control volumes. For instance, if g represents the approx-
imation to the flux (in our case q" = —AVp" where p" is the approximation
of the pressure), it is required that

/ q" -n= / q for each control volume V.
av 1%

For Dirichlet boundary condition, V' is a control volume that does not cross
012 from a set of control volumes of interest, and here and after n is the
normal vector pointing out the control volume. We say that a discrete method
is conservative if the total flux restriction such as the one written above holds.

We note that FV methods that use higher degree piecewise polynomi-
als have been introduced in the literature; see [3, 4, 5]. We consider a Ritz
formulation and construct a solution procedure that combines a continuous
Galerkin-type formulation that concurrently satisfies mass conservation re-
strictions. We impose finite volume restrictions by using a scalar Lagrange
multiplier for each restriction; see [1, 6].

The variational formulation of problem (1) is to find p € HE(£2) such that

a(p,v) = F(v) for all v € Hy(2), (3)

where the bilinear form a is defined by
a(p,v) = / A(z)Vp(z)Vu(x)dz, (4)
Q

the functional F' is defined by F(v) = [, q(z)v(x)dz. The Problem (3) is
equivalent to the minimization problem:

i _ 1 _
p= argvergér(lm J(w) where J(v)= 2a(v, v) — F(v). (5)

Let the triangulation 7, = {Rk}g », made of elements that are triangles
or squares, where IV}, is the number of elements. We also introduce the dual

1 The use of second order formulation makes sense especially for cases where some form of
high regularity holds. Usually in these cases the equality in the second order formulation
is an equality in L2 so that, in principle, there is no need to write the system of first order
equations and weaken the equality by introducing less regular spaces for the pressure as it
is done in mixed formulation with L2 pressure.
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mesh 77 = {Vk}g:hl where the elements are called control volumes. In this
paper we assume that each Vj is a subdomain of {2 with polygonal boundary.
Let us introduce the space H := {v € H}(£2) : AVv € H(div, 2)}. If g € L?
we have that (3) is equivalent to: Find p € H{ such that

p = arg min 7 (v), (6)

WhereW:{veH: —AVv-n:/q forallTET;:}.
T T

Problem (6) above can be view as Lagrange multipliers min-max optimiza-
tion problem. See [2] and references therein. Let us denote M) = RV,

The Lagrange multiplier formulation of problem (6) can be written as:
Find p € H and A € M}, that solves

(b, \) = arg max min J(v) — (@(v, u) - F(n)). (7)

pweRN, vEH,

Here, the total flux bilinear form @ : H x M} — R is defined by

E(v,u)zz,uk/av AVv-n forallve H and p € M". (8)
k=1 k

The functional F : My, — R is defined by F(u) = Y1 puy [y, g, for all p €

M". The first order conditions of the min-max problem above give the fol-
lowing saddle point problem: Find p € Hi(£2) and A = 0 € Mj, that solves:

a(p,v) +a(v,\) = F(v) forallve H, )
a(p, 1) = F(u) for all p € M".

3 Discretization and error

Let us consider P" = Q" (75,) N Hg (£2). We also interpret M" as Q°(7}), that
is, the space of piecewise constant functions on the dual mesh 7;. See for
instance [6] where we consider GMsFEM spaces instead of piecewise polyno-
mials.

The discrete version of (9) is to find p" € P and A € M" such that

a(p™, ") +a(", \") = F(u") for all v" € P" (10)
a(p", u") = F(u") for all u" € M". (11

The equivalent matrix form is,
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h
u /
)= 17] ®
where A is the finite element stiffness matrix corresponding to finite element
space P" = span {y;},

AA
40

A= [am} where Qi = / AV% . ch] (13)
0]

The restriction or finite volume matrix A is given by,

A =[a;] whereay; = AVp; -n. (14)

Moreover, f = [f;] with fi = [,q¢; and f = [?k]iv:hl with f, = Jv, @

Note that matrix A is related to classical (low order) finite volume matrix.
Matrix A is a rectangular matrix with more columns than rows. Several pre-
vious works on conservative high-order approximation of second order elliptic
problem have been designed by “adding” rows using several constructions.
See [1] for details.

We consider a particular case of a regular mesh made of squares. Our anal-
ysis is valid for high order finite element on regular meshes made of triangles
since a similar analysis holds in this case. Define I'™* = fj:”l that is, I'* is the
interior interface generated by the dual triangulation. For u € M" define [u]
on I'* as the jump across element interfaces such that [p]|av,nov,, = 1k — 1w -

Note that a(v, 1) = 21&1 fi [y, Vo-n= [ Vv n[y].

In our analysis we use the energy norm in the space that approximates
the pressure and a discrete norm in the space of Lagrange multipliers. De-
note [|v|2 = [,AVv - Vo for all v € Hj(£2). Let us recall the defini-
tion of space H = {v € H}(2) : AVv € H(div, )}, and additional set
Pl = Span{P", H}. We define the norm (that is motivated by the analysis)

Nj,
h
\|v||§3i = W3 + 12 ) Av]32(m, forall ve Pl (15)
=1
Note that if v € Q", then ||1)H?DJ,r = |U|§11(9) using an inverse inequality. Also
define the discrete norm for the spaces of Lagrange multipliers as

Il =5 [ W (16)

It is possible to verify that ([1])
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1. Augmented norm: |[v||, < ”U”Pi for all v € P

2. Continuity: |a| € R such that |a(v, u")| < |d|||’UHPﬁ||/,LhHMh for allv € PP
and ph € M".

3. Inf-Sup: inf ,ncprn SUPye pl % >a > 0.

We also have established optimal approximation in energy norm (||p—p"|lo =

hlp|r2(e)) and using a duality argument it is possible to write the optimal

L? approximation [[p — (p" + A")[lo = R%[p|m2(0); see [1] for details.

4 The case of highly anisotropic media

One issue with some cases of conservative methods is the lack of coerciveness
under the presence of high-anisotropic coefficients. We can think our formula-
tion as a stabilization for these cases (in the sense that we increase the space
of the solution while keeping fixed the space for the Lagrange multipliers).
Preliminary numerical studies suggest that our formulation is more robust
(with respect to anisotropy) than the classical finite volume formulations.

A nice feature of our formulation is that the symmetric saddle point (12) is
suitable for constructing robust preconditioners; see [2] for variety of solvers
and iteration that can be used. Here we present a simple stationary iteration.
Consider the iteration

Auppr = f A N -
Ak+1 = Ak + LUB_l(AUk+1 — f)

Here w is a relaxation parameter and B a preconditioner to be defined. This
iteration corresponds to a preconditioned Richardson iteration applied to
the Schur complement problem (to solve for the Lagrange multiplier lambda
equation). We have, by combining the two equations above,

(17)

Mer1 = M\ +wB™ (g — SA)

where g = AA™'f — f and S is the Schur complement S = AA-A". Note
that the size of S is the number of interior vertices if the control volumes
are constructed by joining the centers of the elements of the primal mesh. In
the case of isotropic coeflicients and square elements, we can take B = My,
defined in (16); see [2]. In order to take into account the anisotropy, below in
the numerical tests we consider B defined by

B = [bi;] where b;; = / AV Vip; with @i, 5 € Q' N Hy(£2).
D
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5 Numerical experiments

We consider the Dirichlet problem (1). Let £2 = (0,1) x (0,1). We consider a
regular mesh made of 4” squares. The dual mesh is constructed by joining the
centers of the elements of the primal mesh. We perform a series of numerical
experiments to compare properties of FEM solutions with the solution of our
high order FV formulation (to which we refer from now on as FV solution).
We select the exact solution p(z, y) = sin(wz) sin(ny)(—x+3y) and f = —Au.
On Table 1 we compare our Q' FV method with the classical Q! finite
element method. We compute L? and H' errors. We observe optimal con-
vergence of both strategies however the FV is conservative. On Table 2 we
consider Q? elements and optimal higher convergence rates are confirmed.

L|\FEM, L? Error| FV.L? Error |FEM, H' Error|FV. H' Error
1| 1.5538 x 10~1 |1.5103 x 10~1 1.1297 x 109 | 1.1338 x 10°
2| 3.6342 x 1072 [3.1881 x 10~ 2 || 5.3226 x 10~ |5.3416 x 10~1
3| 8.9720 x 103 [7.5.276 x 10~3|| 2.6374 x 10~ |2.6403 x 10~1
4| 2.2548 x 1073 [1.9348 x 10~3|| 1.3163 x 10~! [1.3172 x 10!
5| 5.5513 x 10~% [4.6095 x 10~ 4| 6.5833 x 10~2 |6.5840 x 10—2
6| 1.3875 x 10~% [1.1513 x 10~ 4 || 3.2948 x 10~2 |3.2924 x 102
7| 3.4685 x 1075 [2.8776 x 10~°| 1.6418 x 10~2 |[1.6489 x 102

Table 1 Table of FEM and FV L? and H!

FEM L? Error

FV.L? Error

errors using Q! elements.

FEM H! Error

FV.H! Error

1.4061 x 102

2.4548 x 10~2

1.9302 x 101

2.2436 x 10~1

2.1217 x 10~3

4.9023 x 10~3

5.4862 x 10~2

7.2895 x 10~2

2.6860 x 10~4

6.4789 x 10~4

1.4072 x 102

1.8847 x 102

3.3875 x 10~°

8.1756 x 10~°

3.5418 x 10~3

4.7552 x 10~3

4.2437 x 10~6

1.0242 x 10~°

8.3539 x 10~

1.2667 x 103

oo | w| | =]

5.3075 x 10~7

1.2810 x 106

2.2016 x 10~*

2.9616 x 10~4

7

6.6353 x 1078

1.6015 x 107

5.5043 x 10~°

Table 2 Table of FEM and FV L? and H! errors using Q2

7.4046 x 10~°

elements.

We now move to symmetric anisotropic coefficients A. We now show in Ta-
bles 3-8 the smallest and the largest eigenvalues of Amax(B~1S)/Amin(B~15)
for different values of A, h = 2% and for Q', Q? and Q? elements. The A has
eigenvalues 1 and 7 and associate eigenvector n = (cos(0),sin(0))!. From
these results we see that the smallest eigenvalue is very stable, therefore, the
discrete inf-sup is satisfied. This is a strong result since finite volume dis-
cretizations sometimes lack in coerciveness for highly anisotropic media. The
proposed preconditioner performs well however has a mildly dependence with
respect to the different configuration of anisotropy direction and anisotropy
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ratio. This is somehow expected since the continuity given in (15) is with
respect to the Vj,-norm rather than a-norm, and further studies are on the
way to eliminate this dependence. Recall that the application of the precon-
ditioner requires the solution of a low-order (Q!) classical symmetric finite
element problem. In practice, these solve can be replaced by a robust method
for low-order finite element method and inexact Uzawa or Conjugated Gra-
dient. Recall also that we obtain conservative solutions.

L\n| 1 10 | 100 | 1000 1 10 | 100 | 1000 1 10 | 100 | 1000
9 1.76 |1.76 |1.76 |1.76 ||1.76 |1.76 [1.81 [1.81 |[1.76 |1.80 |[1.82 |1.83
1.05| 1.05| 1.05| 1.05|| 1.05| 1.05| 1.05| 1.05|| 1.05| 1.05| 1.05| 1.05

2.09 [2.09 |2.09 |2.09 [[2.09 [2.11 |2.12 [2.12 [[2.09 |2.11 |2.13 |2.14

3 1.01| 1.01| 1.01| 1.01}| 1.01| 1.01| 1.01| 1.01|} 1.01| 1.01| 1.01| 1.01
4 2.20 [2.20 |2.20 |2.20 ([2.20 [2.21 |2.22 [2.22 [[2.20 |2.21 |2.22 |2.22
1.00| 1.00| 1.00| 1.00|| 1.00| 1.00| 1.00| 1.00|| 1.00| 1.00| 1.00| 1.00

5 2.24 1224 (2.24 |2.24 (|2.23 [2.24 |2.24 |2.24 ||2.24 (2.24 |2.24 [2.24
1.00| 1.00| 1.00| 1.00|| 1.00| 1.00| 1.00| 1.00|| 1.00| 1.00| 1.00| 1.00

6 2.25 [2.25 |2.25 |2.25 |[2.25 [2.25 |2.25 [2.25 |[2.25 |2.25 |2.25 [2.25
1.00| 1.00| 1.00| 1.00|| 1.00| 1.00| 1.00| 1.00|| 1.00| 1.00| 1.00| 1.00

Table 3 Maximum and minimum eigenvalue /;\::Lﬁ for © = 1(left), © = F (center),

© = 7 (right) and P" = Q. The A has eigenvalues 1 and 7 and the eigenvector associated
to n is (cos(©),sin(O))*.

L\n| 1 10 | 100 | 1000 1 10 | 100 | 1000 1 10 | 100 | 1000
1.79 (1.80 [1.81 |1.81 |[1.79 |2.13 |2.47 |2.53 [|1.79 |2.32 [2.98 | 3.12
1.05| 1.05| 1.06| 1.06|| 1.05| 1.09| 1.11| 1.11|| 1.05| 1.10| 1.12| 1.12
2.10 |2.10 |2.11 |2.11 [|2.10 |2.50 |2.99 [3.18 [|2.10 [2.77 [4.03 [4,43
1.01| 1.01| 1.01| 1.01|| 1.01| 1.02| 1.03| 1.03|| 1.01| 1.02| 1.03| 1.03
2.21 221 |2.21 |2.21 ([2.21 [2.61 |3.27 [3.92 |[2.21 |2.91 |4.40 |5.24
1.00| 1.00| 1.00| 1.00|| 1.00| 1.01| 1.01| 1.01|| 1.00| 1.01| 1.01| 1.01
2.24 1224 [2.24 |2.24 ||2.24 |2.64 |3.43 |4.90 [|2.24 [2.95 |4.52 |6.43
1.00| 1.00| 1.00| 1.00|| 1.00| 1.00| 1.00| 1.00|| 1.00| 1.00| 1.00| 1.00
2.25 [2.25 [2.25 |2.25 ||2.25 [2.65 |3.48 |5.86 ||2.25 [2.95 |4.57 | 7.60
1.00| 1.00| 1.00| 1.00|| 1.00| 1.00| 1.00| 1.00|| 1.00| 1.00| 1.00| 1.00

6

Table 4 Maximum and minimum eigenvalue f\‘mA for © = 1 (left), ® = § (center),

© = 7 (right) and Py = Q2. The A has eigenvalues 1 and 7 and the eigenvector associated

to n is (cos(©),sin(O))*.

6 Conclusions

In this paper we use a Ritz formulation with constraints to obtain locally
conservative fluxes in the approximation of the Darcy equation. With this
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L\n| 1 10 | 100 | 1000 1 10 | 100 | 1000 1 10 | 100 | 1000
9 4.52 |4.54 |4.57 |4.58 [[4.52 [4.72 |6.92 [7.21 |[4.52 |4.80 |5.01 |[5.05
2.43| 2.43| 2.43| 2.43 || 2.29| 2.29| 2.29| 2.29(| 2.44| 2.28| 2.24| 2.23
3 5.32 |5.35 |5.40 |5.41 [[5.33 [5.47 |6.92 [7.21 |[5.32 |5.67 |7.37 |7.68
2.29| 2.29| 2.29| 2.29( 2.29| 1.95| 1.89| 1.90( 2.29| 1.92| 1.86| 1.64
4 5.59 [5.62 |5.68 |5.69 [|5.60 [5.89 |10.8 [12.2 [[5.59 |6.48 |12.2 [13.7
2.26| 2.26| 2.26| 2.26 | 2.26| 1.81| 1.74| 1.74| 2.26| 1.78| 1.72| 1.72
5 5.67 [6.70 [5.75 |5.77 ||5.67 [6.19 |16.9 |22.2 ||5.67 [7.09 |20.2 |26.3
2.25( 2.25| 2.25| 2.25( 2.25| 1.75| 1.68| 1.67|| 2.25| 1.73| 1.67| 1.66
6 5.69 |5.72 |5.77 |5.79 || 5.68 [5.68 |24.7 [41.4 ||5.68 |7.46 |30.8 |[50.7
2.25( 2.25| 2.25| 2.25( 2.25| 1.72| 1.65| 1.65]|| 2.25| 1.70| 1.65| 1.64

Table 5 Maximum and minimum eigenvalue ;‘::Lﬁ for © = 1 (left), © = & (center),

6 = 7 (right) and P, = Q3.

formulation we obtain solution that have high-order approximation and still
yield locally conservative fluxes with no post-processing. We show that the
resulting linear system can be solve using a stationary iteration where the
application of the preconditioner uses an approximation of a low-order finite
element problem. We present numerical evidence to support our findings.
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A Nonlinear ParaExp Algorithm

Martin J. Gander, Stefan Giittel, and Madalina Petcu

1 Derivation of the Nonlinear ParaExp Algorithm

Time parallelization has a long history, see [1] and references therein. The parallel
speedup obtained is in general not as good as with space parallelization, especially
for hyperbolic problems. A notable exception are waveform relaxation-type meth-
ods [3, 4], which in the hyperbolic case are related to the more recent tent-pitching
approach [6], and the ParaExp algorithm [7, 9] based on Krylov methods, which is
however restricted to linear problems. For an application in a nonlinear context, see
[10], and for a different approach using Krylov information, see [8]. Here we pro-
pose and analyze a variant of the ParaExp algorithm for the nonlinear initial value
problem

u'(r) =Au(t)+B(u(t)) +g(r), r€[0,T], u(0)=nuy, (1.1

withA € C"™*™ B:C™ — C™ anonlinear operator, g : [0, 7] — C™ a source function,
and u : [0,7] — C™ the sought solution. Throughout this note we assume that all
stated initial value problems have unique solutions. For the ParaExp algorithm, the
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2 Martin J. Gander, Stefan Giittel, and Madalina Petcu

time interval [0, T] is partitioned into N subintervals [7,,_;,T,] withn=1,... N, and
a direct application of this algorithm to the nonlinear problem (1.1) gives

Step 1: Solve for n > 1 in parallel the nonlinear problems with zero initial data

v, (1) = AV (1) + B(va(1)) +8(1), 1€ [T—1.Th),
Vn(T,,,]) =0.

Step 2: Solve for n > 1 in parallel the linear non-homogeneous problems

w, (1) = Aw,(2t), t€[T,1,T],
Wo(Tho1) = Vo1 (Tr1),  vo(To) = uo.

ParaExp then forms the linear combinationu(t) = v, () + X}_, w;(?), € [T,-1, Tn),
which still satisfies the initial condition, but not equation (1.1) since u’(r) = Au(r) +
B(vy(t)) +g(t), t € [T,—1,T;], except when B is not present. One can however
naturally separate the solution into u(z) = v(¢) + w(z), with w solving the linear
problem w'(r) = Aw(z), w(r) = up, and v solving the nonlinear remaining part
V(1) = Av(r) + B(v(t) +w(r)) 4+ g(t), v(0) = 0. To apply this splitting on multi-
ple time intervals [7,,_1,T,] we need to iterate. Using the initialization v)(7;,) = 0

n
forn=1,...,N (or some other approximation), we perform for k=1,2,...

Step 1: Solve for n > 1 in parallel the linear problems

(wh) () =awi().  1€[T,0.T), 2
Wﬁ(Tnfl) = V]:z:ll (Tu-1), Wlf(TO) = Up.
Step 2: Solve for n > 1 in parallel the nonlinear problems
n
(V) (6) =AVE() + B(VE(r) + Y wh(e)) +g(t), 1€ (L1, T, w3
J=1 .

Vl:l(Tn,I) =0.

The new approximate solution is then defined by u*(r) = v¥(r) + Yo W]; (1), t €
[T,—1,T,), which now satisfies equation (1.1) on each time interval [T,,_1,T,,), and
u¥(0) = ug. The solution of the linear part (1.2) can still be computed efficiently as in
the ParaExp algorithm using Krylov techniques, but (1.3) requires the computation
of ):7:] w’]‘- on [T,_1,T,], and thus would need the Krylov approximation of w’]‘- on
the entire interval [T;,—, ;). To avoid this, we rewrite the algorithm in terms of uﬁ
instead of vk, where u} approximates u: starting with ud(7;,) = w%(7,,) = 0 for all j

J
and n, the nonlinear ParaExp algorithm performs for k =1,2,...

Step 1: Solve for n > 1 in parallel the linear problems
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(wi)' (1) = Aw, (1), (€ [T, T,
-1
N kol - (1.4)

Step 2: Solve for n > 1 in parallel the nonlinear problems

(u¥) (1) = Auk(e) + B(uk (1)) +g(t), 1€ [T1,T],

n
(1.5)
uﬁ(Tnfl) = Z WI;’(Tnfl)a
j=1
and form the new approximate solution as
(@) =uk(t), 1€l 1,T,). (1.6)

Remark 1. To avoid the computation of uf as the solution of a nonlinear problem,
one could linearize (1.5) by using in the nonlinear term B(uf~!) instead of B(u¥),
where u’ = 0 or some other approximation of the solution. However, in what follows
we focus on the fully nonlinear version, since then u* is the solution of the nonlinear
problem (1.1) on each time interval.

2 Analysis of the Nonlinear ParaExp Algorithm

We first show that the nonlinear ParaExp algorithm introduced in the previous sec-
tion converges in a finite number of steps.

Theorem 1. The approximate solution u* obtained at iteration k and defined by
(1.6) coincides with the exact solution u on the time interval [Ty, T},).

Proof. Since wk(Ty) =ug forall k= 1,2,..., wk = wk~! on the time interval [Tp, T

for all k = 2,3,.... Next, for k = 1 we have u'(t) = ul(r) on [Ty, T;], and since
u{(To) = w{(To) = ug we get by the uniqueness of the solution of (1.5) that u{
coincides with the exact solution u on the time interval [Ty, T1].
We now prove by induction that for all k =2,3... we have
ut=u on [T, ,T;], Vn<k, wﬁ =wlon [T, 1, T], Vn<k—1. (2.1)
For k = 2, we only need to prove property (2.1) for u?, since for w% it is ensured by
the fact that w& = wi™! for all k > 2. The initial condition for u3 is

w3 (7)) = wi(T) +wa(Th) = wi(Th) +ui(Th) —wi(Ty) = ui (1) = u(Ty),

where we used the fact that w% = w% and that u% is the exact solution on the time
interval [Ty, 7). Since u3 satisfies the same equation as u on the time interval [T}, 73]
and u3(T;) = u(7Ty), u3 must coincide with u on [7j,73]. But we also know that
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u}(Ty) = wi(Ty) = up and that u? satisfies (1.5), which implies uj = u on [Ty, T3],
and hence u? coincides with the exact solution of (1.1) on the time interval [0, T»).

We now suppose that (2.1) holds for all iterations up to an arbitrarily fixed index k
and we prove (2.1) for k+ 1. To first check that wi*! = wk on [T,_,T] for all
n=2,3,...,k, we compute

n—1 n—1

Wi (T =l (T) = Y WA(T) =u(T) = Y W' (1)
Jj=1 J=1
n—1

where we have used the recurrence hypothesis (2.1). Since wX*! and wk satisfy the

same equation and have the same initial condition, the result follows. We next prove
that ut*! =won [T, _,T;] for all n < k + 1. Since we already know that u‘*! and u
satisfy the same equation on the time interval [T,,_,T,], we only need to check that

the initial condition satisfied by u’,‘l“,
n n—1 n—1
“ﬁ“ (Th1) = Z WI;H (Th1) = Z WI;'H (Th1) +“§71(Tn71) - Z Wj(Tnfl)
j=1 j=1 j=1
= uﬁfl(Tnfl)v

where we used the first result we just proved for w’,‘,Jrl and that w’f“ = W’l‘ for all k.
Now, using the recurrence hypothesis (2.1), we know that u‘;‘hl coincides with the
exact solution of (1.1) on [T;,_»,7;,_1], which implies that u**!(7,_;) = u(T,,_;). O

We now show that the nonlinear ParaExp algorithm can be interpreted in the
context of the Parareal algorithm if written as a multiple shooting method (see [5,
2]). We will need the following result.

Lemma 1. Let (u’,‘l)k’,, be the sequence defined by the nonlinear ParaExp algorithm
(1.4)~(1.6). Defining W, (T,) = 0 and C(T,)) = 0 for all n > 0, let (CX), . for all
k> 1andn > 1 be the solutions of the linear problems
(Ch)'(1) =ACK(), t€[T1, T,
Ch(Ty1) = Ch_y(Ti1) + 0, 1 (Ti) = CL (T1), CH(To) = w,

and let (ﬁﬁ)k , be the solutions of the nonlinear problems

(U5) (1) = Aus(1) + B(Uy (1)) +8(t), 1€ [T 1,Thl,

ﬁlr(z(Tnfl) = C]rcz(Tnfl)-

Then uk = ﬁﬁ on [Ty—1,T,] foralln >0 and k > 1.

Proof. Atstepk=1andforalln > 1, C,ll is the solution of the linear problem
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(€)' (1) = AC,(1), te 1,1,
Cy(T-1) = Cpy (Tre1),  Ci(To) = uo.

Hence C} is the restriction of the solution of u’ = Au, u(0) = ug on [T, T] to the
time interval [T;,_1, T,,]. Taking into account the definition (1.4) of w), we notice that
w) =0 for n > 1 and w} is the solution of the linear problem u’ = Au, u(0) = u on

To,T|. Thus, Clt)=Y"_,wl(r) on T.-1,T,|, and ! satisfies for n >1
n j=1"j n

(0,) (1) = Au,(1) + B(U, (1)) +8(t), 1€ [T 1T,

Wl(T, 1) = CHT ) = Y wWh(T, ).
=1

Comparing this with (1.5) and usin% the uniqueness of the solution for the nonlinear
problem, we deduce that u!(t) =u,(¢) on [T;,_1,T;] forall n > 1.

Assuming now that for all n > 1 and a given k we have Ck(r) = fa w';(t),
uk(1) = (1) on [T;,_1,T,,],.we need to show that this also holds for k -+ 1. To do so,
we prove by recurrence with respect to n that CK1(z) = f W];+] (t) on [T,—1,Tp).
For n = 1, we have that ! (Tp) = uyp = WA ™! (Tp) and, since C5™" and wh™! satisfy
the same equation and the same initial condition, we conclude that C/[H = W'f“ on

[Ty, T]. Next, we suppose that Ck+1(r) = ¥"_, WI;+1 (¢) on [T,—1,T,] and prove that

Cyii (1) = 2wt (¢) on [T, To.11]. By checking the initial condition of Cjf]

at T, and using the recurrence hypothesis, we find
k+1 k+1 k ok k+1 k+1 O
Cr:rl (Tn) = Crz+ (Tn)+un(Tn) - Z Wj(Tn) = Crz+ (Tn)jLWnil (Tn) = Z wit (Tn)-
Jj=1 Jj=1

Since CXT] and Z;’i{ w’}“ solve the same linear problem on [7,,, T, 1] and satisfy

the same initial condition at 7},, we obtain C’,‘lﬂ = Z;’Ll w’]‘-Jrl on [T,,, T,+1]. Further,
for n > 1 we have

@ () =Aad O +BET (1) +2(r), te€[T1, T,

n
ﬁlr(zﬂ(Tnfl) = C];'TL] (Ta-1) = Z WI;'H (Th-1)-
j=1

Thus, ﬁl,‘,H and uk*! solve the same equation with identical initial condition on
[T,-1,T,] and hence a0’ "' = uk*! on [T, T;). O

The following theorem is essentially a reformulation of Lemma 1 in the usual
notation of the parareal algorithm in terms of a coarse and a fine integrator [11].

Theorem 2. Let the coarse propagator G(T,,,T,—1,U) solve the linear problem

u'(t) =Au(t) on [T,_1,T,], u(T,_1)=1,
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and let the fine propagator F (T, T,—1,U) solve the nonlinear problem
u'(t) =Au(t) +B(u(t)) +g(r) on [T,-1,T), w(T—1)=U.

Then the solution u* computed by the nonlinear ParaExp algorithm (1.4)—~(1.6) coin-
cides at each time point T, with the solution Ul,‘l computed by the parareal algorithm

Us =F(T,, T, 1, Uy ) + G(T, Ty 1, Uy ) = G(T,,, T, 1, Uy ). (2.2)
Proof. Using the definition of u* in (1.6) and the notation of Lemma 1, we have
k(T )= uﬁ+1(Tn) C];H»l( n) = Ck( T.) +“ﬁ7] (Tn) — Ckil (Tn)

u
G(TnyTn l; (Tn l)) (Tannflvclr(lil(Trzfl))jLuk I(Tn)
G (T, Th-1,Ch(Th-1)) — G (T, Tu1,C  (Tnt)) + F (T, Tm1, € ().

Thus u¥(7,,) = UX with UX = CX_ | (T;,). O

Theorem 2 shows that the nonlinear ParaExp algorithm is mathematically equiva-
lent to the parareal algorithm (2.2) where the coarse integrator G is an exponential
integrator for w' = Aw. There is however an important computational difference:
due to the linearity of G we can write
G(Tnv Tnfl aUl:,t% )
= G(Tm T, ,F(T,,,] ) Tn727Uﬁ72) - G(T,,,] ) Tn727Uﬁ72) + G(TH*I ) Tnfszﬁté))
= G(Tn, Ty-1,F(Ti-1,T1-2, Uy ) = G(T,-1, T2, Uy ) + G(T,, T2, Uy LY,

which corresponds to the coarse propagation of a jump over [T;,—1, T,] plus the coarse
propagation of U’,‘lJrl over a longer time interval [T;,_», T,,]. Repeating a similar cal-

culation for G(T;,, T;,—2,U*"}), we derive
G(T,, Th—2,UL)) = G(T,, T2, F(Ty—2, T,—3,U}_3) — G(T, 2, T,-3,U}_3))
+ G(Tn; Tn737UlyT:é)7

which again corresponds to the coarse propagation of a jump (over two intervals)
plus a coarse propagation of U"+1 (over three intervals). This recursion can be re-

peated, and it will terminate as UkJrl Uy is known, leading to an alternative, more
compact formulation of the nonlinear ParaExp algorithm:

initialize U° = G(T;,, Ty, Up) for n=0,1,...,N,
n
Ut = G(1,,T5,U0) + Y, G(T,, Tj, F (T}, Tj—1, U5 ) = G(T;,Tj—1, U5 ).
j=1

Here the coarse integrator is applied in parallel, which is different from parareal.
The price to pay is that the coarse integrations now span multiple overlapping time
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intervals [T}, T,]. As in the original ParaExp algorithm, these linear homogeneous
problems can be solved very efficiently using Krylov methods.

3 Numerical Illustration

We now investigate the nonlinear ParaExp algorithm numerically. We solve the non-
linear wave equation u;; = uy, + u® on the time-space domain [0,4] x [—1, 1] with
homogeneous Dirichlet boundary conditions and u(0,x) = ¢~ 19, 4/(0,x) = 0,
where the parameter o > 0 controls the nonlinear character of the problem. The
problem is discretized in space using finite differences with m = 200 equispaced
interior grid points on [—1, 1]. This gives rise to the ODE

o= (28] B+ o]

= o2l

v LOj||v ou

where L = tridiag(1,—2,1)/h% h=2/(m+ 1), and the operation u® has to be un-
derstood component-wise. We partition the time interval [0,4] into n = 20 slices of
equal length and use as fine integrator MATLAB’s ode15s routine with a relative
error tolerance of 10~°. For the linear coarse integration we use MATLAB’s expm.

Table 1 lists, for varying a € {0,2,4,6,8.2}, the number of iterations required
by our nonlinear ParaExp algorithm to achieve an error of order ~ le — 6 over all
time slices. Figure 1 shows, again for varying «, the reference solutions u(t,x) on
the left, and on the right the error of the ParaExp solution at each time point ¢; after
k=1,2,... iterations. Here a number of k = 0 iterations corresponds to the error of
the ParaExp initialization with the coarse integrator.

The parameter @@ = 0 gives rise to a linear problem. Note that for this case the
error of the initialization is of order ~ 10~°, and not of order machine precision as
one would expect from the exponential integration using expm. This is because our
reference solution has been computed via ode15s and is of lower accuracy.

For increasing values of & the nonlinear character of the wave equation becomes
more pronounced and typically more ParaExp iterations are required. It depends on
the efficiency of the coarse propagator (in this case expm) if any speed-up would
be obtained in a parallel implementation. For large-scale problems the use of (ratio-
nal) Krylov techniques as in [7] is recommended. The nonlinear ParaExp method
becomes inefficient for highly nonlinear problems, with 14 iterations required for
o = 8.2. This is expected and we note that for a ~ 9 the solution u(¢,x) even ap-
pears to have a singularity in the time-space domain of interest.
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Fig. 1 Exact solutions (left) and convergence (right) of the nonlinear ParaExp algorithm applied
to a nonlinear wave equation with varying parameter « € {0,2,4,6,8.2} (top to bottom).
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parametera‘ 0 ‘ 2 ‘ 4 ‘ 6 |8.2

# iterations ‘ 1 ‘ 5 ‘ 7 ‘ 7 | 14

Table 1 Number of iterations required by the nonlinear ParaExp algorithm to solve a nonlinear
wave equation to fixed accuracy uniformly over a time interval. The parameter a controls the
nonlinearity of the problem.
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On Optimal Coarse Spaces for Domain
Decomposition and Their Approximation

Martin J. Gander, Laurence Halpern, and Kévin Santugini

1 Definition of the Optimal Coarse Space

We consider a general second order elliptic model problem
Zu=1f inQ Q)

with some given boundary conditions that make the problethpesed. We decom-
pose the domai@ first into non-overlapping subdomaiﬁzﬁ, j=12,....J, and
to consider also overlapping domain decomposition methadsconstruct over-
lapping subdomain®; from f)j by simply enlarging them a bit. All domain de-
composition methods provide at iteraticnnsolutionsu’j1 on the subdomaing;,
j=1,2,...,3 (oronQj in the case of overlapping methods, but then we just restrict
those to the non-overlapping decompositidy). We want to study here properties
of the correction that needs to be added to these subdomniatioss in order to ob-
tain the solutioru of (1). This would be the best possible correction a coaraeesp
can provide, independently of the domain decompositiomotetised, and it allows
us to define an optimal coarse space, which we then approximat

Since theu? are subdomain solutions, they satisfy equation (1) on ttwire-
sponding subdomain,

2l =1, inQ. 2)

Defining the error
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€'(x) ;== u(x) —uj(x), xe Q,

we see that the error satisfies the homogeneous problemhirseadomain,
Z2e"'=0 inQ;. (3)

At the interface between the non-overlapping subdoméijnthe error is in general
not continuous, and also the normal derivative of the esorot continuous, since
the subdomain solutioru%‘ in general do not have this propettyrhe best coarse
space, which we call optimal coarse space, must thus copitdewise harmonic
functions onQ; to be able to represent the error.

2 Computing the Optimal Coarse Correction

Having identified the optimal coarse space, we need to explajeneral method
to determine the optimal coarse correction in it. While tviffedent approaches for
specific cases can be found in [8, 7], we present now a conypttaeral approach:
let us denote the interface between subdon!fluandQJ by lij, and let the jumps
in the Dirichlet and Neumann traces between subdomainisnkibe denoted by

g} (0 = ul(x) —uf(x), h}(x) := I ul(x) +on, U (%), xe T, (4)

Where(?nj denotes the outer normal derivative of subdoméijn Then the error
satisfies the transmission problem

2" =0 in Q;,
g'(x) —€f(x) =gl (x) onfi, (5)
On€'(X) + 0n;€](x) = hjj(x) ~ onfjj.

Its solution lies in the optimal coarse space, and when atiéte iterates!”, we
obtain the solution: the domain decomposition method haerbe a direct solver,
it is nilpotent, independently of the domain decomposititethod and the problem
we solve: no better coarse correction is possible!

We now give a weak formulation of the transmission problejn 6 simplify
the exposition, we use the case of the Laplacigh,= —A. We multiply the par-
tial differential equation from (5) in each subdoma}p by a test functiorv; and
integrate by parts to obtain

Je;
De-~Dv-—/ %y —o. 6
/Qj e TN (6)

1 For certain methods, continuity of the normal derivativdisvever assured, like in the FETI
methods, or continuity of the Dirichlet traces, like in thetdnann-Neumann method or the alter-
nating Schwarz method. This can be used to reduce the sihe optimal coarse space.
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If we denote byeandvithe functions defined on all @ by the piecewise definition
€ o, 1= €j andv]g, :=vj, then we can combine (6) over all subdomaisto obtain

/De My Z/, gﬁj Iv 0. 7)

If we impose now continuity on the test functions i.e. v'to be continuous, then

(7) becomes
oe; .
| oe-co- Z/J (an, an.)"_o’ ®)

and we can use the data of the problem to remove the normaatiees,

/Qmé-mv—z/r_ hij 7= 0. ©)
ij oy

It is therefore natural to choose a continuous test fundiitmobtain a variational
formulation of the transmission problem (5), a functionhie space

Vi={vivlg =V € Hi (&), v =vjonfj}. (10)

Now the jump in the Dirichlet traces of the errors would in geat be imposed on
the trial function space,

U:={u:ulg = u € Hi(Q), ui—uj=gjonrj}, (11)

so the complete variational formulation for (5) is:

findéeU,suchthat/ 06 09— / hji=0 WieV. (12)
JQ — JTij

To discretize the variational formulation (12), we have mase approximations
of the space¥ andU, and both spaces contain interior Dirichlet conditionsaln
finite element setting, it is natural to enforce the homogesirichlet conditions
in V;, strongly if the mesh is matching at the interfaces, i.e. vge¢ijmpose the nodal
values to be the same fg,.

While at the continuous level, the optimal coarse correclies in an infinite
dimensional space except for 1d problems, see [5, 7], atiticeade level this space
becomes finite dimensional. Itis in principle then possiblase the optimal coarse
space at the discrete level and to obtain a nilpotent metteda method which
converges after the coarse correction, see for example [P1,8L0], and also [1]
for conditions under which classical subdomain iteratioms become nilpotent. It
is however not very practical to use these high dimensiopgial coarse spaces,
and we are thus interested in approximations.



4 Martin J. Gander, Laurence Halpern, and Kévin Santugini

3 Approximations of the Optimal Coarse Space

We have seen that the optimal coarse space contains fusetinioh satisfy the ho-
mogeneous equation in each non-overlapping subdofhﬁihe. they are harmonic
in f),—. To obtain an approximation of the optimal coarse spacs,tiiérefore suf-
ficient to define an approximation for the functions on theiféices’;, which are
then extended harmonically insidg. A natural way to approximate the functions
on the interfaces is to use a Sturm-Liuville eigenvalue fmat) and then to select
eigenfunctions which correspond to modes on which the swiadtoiteration of the
domain decomposition methods used is not effective. Thisbeadone either for
the entire subdomain, for example choosing eigenfunctibtise Dirichlet to Neu-
mann operator of the subdomain, see [2], or any other eigig@paoblem along the
entire boundary of the subdomaidy, or piecewise on each interfa€g, in which
case also basis functions relating cross points need bealddltle10], see also the
ACMS coarse space [12] and references therein. This canresdving for exam-
ple lower dimensional counterparts of the original probkong the interfacé;;
with boundary conditions one at one end, and zero at the,attesating something
like hat functions around the crosspoint. Doing this forrapée for a rectangular
domain decomposed into rectangular subdomains for Lapkeaeation, this would
just generate Q1 functions on each subdomain. It is impbhiawever to not force
these function to be continuous across subdomains, siagdtive to solve approx-
imately the transmission problem (5) whose solution is moitinuous, except for
specific methods So the resulting coarse basis function is not a hat funatidm
one degree of freedom, but it is a discontinuous hat functiitim e.g. four degrees
of freedom if four subdomains meet at that cross point.

Different approaches not based on approximating an optimaise space, but
also using eigenfunctions in the coarse space to improwafgp@equalities in the
convergence analysis of domain decomposition methods ani=G [14], whose
functions are also harmonic in the interior of subdomaing,[8, 4], where volume
eigenfunctions are used which are thus not harmonic withtidlemains. For a good
overview, see [13].

4 Concrete Example: the Parallel Schwarz Method

We consider the high contrast diffusion problém(a(x,y)0Ju) = f in Q = (0,1)?
with two subdomain®; = (0,152) x (0,1) andQ, = (1,2,1) x (0,1). The classi-
cal parallel Schwarz method is converging most slowly farfiequencies along the
interfacex = % i.e. error components represented in the Laplacian casifkyty),
k=1,2,...,K for some small intege, see for example [6]. These are precisely
the eigenfunctions of the eigenvalue problem one obtaireswusing separation of
variables, which in our high contrast case is

2 see footnote 1
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]

Fig. 1 An example with long channels, shortened channels, anédlsisortened channels

u\\\muluuumumuu S
0

d(ar@) =Aare, (13)

wherear denotes the trace of the high contrast parameter along tedane, in
our simple exampler (y) := a(%,y). So already in the case of Laplaces equation,
it would be good to enrich a classic@l coarse space aligned with the decom-
position with harmonically extended eigenfunctionskity), k = 1,2, ... K into
the subdomains. We now illustrate why this is even more ingmrin the case of
high contrast channels, tla¢x,y) of which are shown in Figure 1. We show in Fig-
ure 2 the performance of a classical parallel Schwarz matictwo subdomains
for increasing overlap sizes. We see that for the case ofbting ¢hannels increas-
ing the overlap improves the performance of the classichlvdcz methods as for
the Laplaciaf, and nothing special happens between overldpadil overlap 48.
This is however completely different for the shortened cledicase, independently
if they are closed or not, were increasing the overlap doekelp at all, until sud-
denly changing from overlap #land overlap 48, the method becomes fast. This
can be easily understood by the maximum principle, andustithted in Figure 3
which shows the errors in the subdomains. We clearly sedltiato the fast dif-
fusion the error propagates rapidly from the interface theosubdomains, and the
maximum principle indicates slow convergence, as longasverlap does not con-
tain the shortened channels. As soon as the overlap cotit@isbortened channels,
convergence becomes rapid. This is very different for timg lohannels, as illus-

10° e e e o 10°
107 I 107 N
——Overlap h —=—Overlap h ..
——Overlap 11h ——Overlap 11h AN
Overlap 21h Overlap 21h ) -
——Overlap 41h ——Overlap 41h h
—+—Overlap 43h —+—Overlap 43h
1072 1072
10 15 20 5 10 15 20
iteration iteration

Fig. 2 Convergence behavior of a classical parallel Schwarz ndefitnohigh contrast long and
shortened channels

3 the same happens if inclusions are only contained withistibelomains, outside the overlap
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Fig. 3 Error for the first four iterations in the shortened chanmelec Top overlap 41 and bottom
overlap 43, and slightly more overlap suddenly leads to much more repivergence.

trated in Figure 4. Here the channels touch the outer boyrafahe domain, and
the maximum principle indicates rapid convergence.

The case of shortened channels is precisely the situati@nesthe convergence
mechanism of the underlying domain decomposition methadpnablems, and if
one can not afford a large enough overlap, a well chosen esa@ce can help. It
suffices to add harmonically extended low frequency modéseotheap, lower di-
mensional interface eigenvalues problem to the coarseslealing to the so called
Spectrally Harmonically Enriched Multiscale coarse sp@idEM), see [11, 10].
Figure 5 shows that the eigenfunctions of the cheap interéégenvalue problem
are almost identical to the eigenfunctions obtained froengkpensive DtN eigen-
value problem on the shortened channels from [2, 12], alidssty similar to the
ones of the DtN eigenvalue problem on the shortened closadngts, except for
the first one. We show in Figure 6 on the left the eigenvalugésetheap interface
eigenvalue problem, compared to the eigenvalues of thensiue DtN-operator
on the shortened channels and the shortened closed chahineysall indicate via
the smallest eigenvalues that there are five channels, anddarse functions are

1 1
05 05
0 0
3 1 1
1 1 1
05 05 05 05
0o oo
1 1
05 05
0 0
_ 1 1
1 1 1
05 05 05 05
0o oo

Fig. 4 Error for the first four iterations in the shortened chanmelec Top overlap 41, and bottom
overlap 43, and slightly more overlap leads to slightly more rapid age.
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Fig. 5 Eigenfunctions of the different eigenvalue problems compa

needed for good convergence, see Figure 6 on the right. Tee@Envalue prob-
lem for the shortened closed channels also indicates tbia thonly one eigenvalue
going to zero when the contrast becomes large. To obtain goodergence, it is
however also in the closed shortened channel case necéssacjude five enrich-
ment functions in the coarse space, see Figure 7. It thusassifiis in SHEM to use
the inexpensive interface eigenvalue problem to consanaffective approxima-
tion of the optimal coarse space, see [10] for simulationthémore general case
of many subdomains and contrast functions.
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Analysis of Overlap in Waveform Relaxation
Methods for RC Circuits

Martin J. Gander!, Pratik M. Kumbhar!, and Albert E. Ruehli?

1 Introduction

Classical Waveform Relaxation (WR) was introduced in 1981 for circuit solver ap-
plications [5]. In WR, large systems of differential equations modeling electric cir-
cuits are partitioned into small subcircuits, which are then solved separately, and an
iteration is used to get better and better approximations to the overall solution of the
underlying large circuit. For classical WR, smart partitioning is very important to
enhance the convergence rate, while optimized WR uses more effective transmis-
sion conditions to enhance the convergence rate, and thus permits also partitioning
at less suitable locations in the circuit without negatively affecting the convergence
rate. We study here for the first time the influence of overlapping subcircuits in
classical and optimized WR methods applied to RC circuits.

2 The RC Circuit Equations

Circuit equations are obtained from a given circuit using Modified Nodal Analysis
(MNA), a major invention that led for circuits to a similar assembly procedure like
the finite element method [4]. The MNA circuit equations for the RC circuit of
length N shown in Figure 1 are

by ¢y
ag bz Cc
v=| . v+, )

an—2 by—1 cn—1
an—1 by

' Section de Mathématiques, Université de Geneve, Switzerland, e-mail: martin.gander@
unige.ch, pratik.kumbhar@unige.ch -2 EMC Laboratory, Missouri University of Sci-
ence And Technology, U.S, e-mail: albert.ruehli@gmail.com.
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Rz Ry-1

Fig. 1: Finite RC circuit of length N.

where the entries in the tridiagonal matrix are given by

1 1y 1 P
a4 = po _(RT1+R711)C711’ .
.C. ) . 1
M =12, N =1, b= (gt =23, N -1,
Ci = R 1 i=N
Ry-1CN” o

The resistances R; and capacitances C; are strictly positive constants. The source
term on the right-hand side is given by f(t)=(I;(t) /C},0,...0)” for some current func-
tion I,(t), and we need to specify initial voltage values v(0) = (v9,19,..,9%)7 at time
t = 0 to solve this system.

3 The Classical WR Algorithm

To define the classical WR algorithm, we partition the circuit in Figure 1 with
the voltages v to be determined into two sub-circuits with unknown voltages u
and w. For convenience in the analysis that will follow, we assume N to be
even, and we renumber the nodes instead of using the numbering from 1 to
N, we use the numbering from —35 —1— 1 to 2, see Figure 2. We thus have v :

(v7%+1,..., V_1,V0,V1, ~-~-VN/2) , Wthh is still of length N, and

V—¥+1 Vo Vo Vi v V3 VN/2
I oo
“-Y+ u_1 up u u u3

wo wi wo w3 WN/2

- — 4 — - .

Fig. 2: Decomposition into two sub-circuits with two nodes overlap.
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o T _ . N

u:.= (uf%H,...,un,z,u,,,],un) , uj=viforj=—-5+1,...,n,
. T _ L N

W= (whwz,...,w%) , wi=vjforj=1,...,7,

which are of length % +nand ¥, since we added n nodes to subcircuit u to have an
overlap of n nodes. The classical WR algorithm applied to the two sub-systems is

k+1

b N _,cCc_N u_N 0 N
A e o0 —¥+1 f77+1
l'lk-‘rl — . . . : + : —+ . ,
ap—2 bnfl Cn—1 Un—1 Ok+l fnfl
an—1 by Un Cnllyy) Jn 2
k+1 1 2
by ¢ wi apwy S
@b e w2 0 f2
w=1 : 1 ]
ay_, by | |wy N
7177 7 0 f?
where uﬁﬂ and wﬁ*' are determined in classical WR by the transmission conditions
K+l ok 1k
Uy g =wyp and wy = ug. 3)

Note that in these transmission conditions, we exchange voltages at the interfaces.

The two subsystems are given the initial voltages u(0) = (v* Nop VO 9T and

w(0) = (W,19, ..7v0%)T, and the initial waveforms uf), w), | are needed to start the
WR algorithm.

To simplify our analysis of the convergence factor, we assume that all resistors
and capacitors are the same, R := R; and C := C; for all i € Z, which implies

b:=b; and a:=a;=c¢; forallieZ, @

and for our RC circuit b = —2a. To further simplify the analysis, we also assume that
the circuit is of infinite length, N — oo, and by linearity it suffices to analyze the ho-
mogeneous problem corresponding to the error equations, and to study convergence
to the zero solution. Taking a Laplace transform in time with Laplace parameter
s € C of the WR algorithm (2), we get in the homogeneous case when N — oo

- ar k+1
Akl _ o o :
sut = a b al| |d,—1 + 0 )
i a b| | awﬁJrl 5
r T ey, k] ~k ®)
b a w1 ai
swhitl — |a b a 12 +10
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Lemmal.Leta>0 b<0,i=+—1,ands:=oc+iw, withc >0.If —b > 2aq,

—bEy/(b—s5)>—4a? . N
then the roots Ay » = % of the characteristic equation aul]‘.ﬂ + (-

s) Tanl —I—aﬁkﬂ = 0 of the subsystems in (5) satisfy |Ad2| < 1 <|Aq].

Proof. Since a >0, b < 0and —b > 2a, we can write b = —(2+ €)a for some € > 0.

Let p+iq:=+/(b—s)* —4a?, for p,q € R, with p > 0. We then obtain with ¢ > 0
that

s—b++/(b—s)*—4a® G+i-a)+(2+£) 1
M| = =
Al =1 2 | = P + g (Pti-g)l
€a+o+p i
=1+ ——+—(o 1.
(14550 g >

Now by Vieta’s formulas, A; 4, = 1, which implies |A;| < 1 and thus completes the
proof.

Theorem 1 (Convergence factor for Classical WR with Overlap). The conver-
gence factor of the classical WR algorithm (5) with n nodes overlap is

Peta(s,a,b) = (;le)nﬂ. (6)

Proof. The iterate w**! for the first subsystem satisfies the recurrence relation
adtl+ (b—s)it vadkll =0 forj=...n—2,n—1n, (7

whose solution is uj Ak‘H?L] BkHl{ for j=...,n—2,n— 1,n. Since the

k+1

solution ! must remain bounded for all j, we must have B! = 0. Substituting

j = ninto (7), we can determine A**! and obtain the general solution

. a 1 P ,
u§+1= (—m)(flr[)llefH_l forJZ...,n—Z,n—l,n. (8)
1

Similarly, we obtain for the second subsystem

= (L ) hal forj=1,2 9
W; ((b—s)—l—alg) it or j 32, ©))

Combining (8) and (9) and using Vieta’s formulas A; + A, = % and LA, = 1 then

gives
il = (az 1(f s>)'(<b—5>ialz) (i) Ay
= () = o

and similarly we find also for the second subsystem w = Peia(s,a b) —1 which
concludes the proof.
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We see that the convergence factor p.,(s,a,b) is the same for all nodes in both
subsystems, and since |A;| > 1, classical WR always converges, and convergence
becomes faster when increasing the number of nodes the subsystems overlap. In
the case |b| = 2a however, |pc4(s,a,b)| — 1 when s — 0, which indicates slow
convergence for this case.

Remark 1. Theorem 1 implies ﬁ?k = (pcla(s7a7b))kﬁ? and W?k = (Pela (s,mb))’%?.
Using the Parseval-Plancherel identity, one can then obtain in the time domain

k k
120) o < ((sup pera(s,a,b)) 1} 0)llo, w3 ()l < ( 5P patals,a,5) ) [1W(0) o
weR weR

where ||x(¢)||¢ := |le"®"x(t)||;2. For 6 = 0, we thus obtain convergence in L?.

4 The Optimized WR Algorithm

New transmission conditions were proposed in [1] for WR, namely
k+1 k41 k+1 _ ¢y 0k k k
N N D N (10
(W —wo ) +Bwg = () —up) + Buy,
where a and B are weighting factors that can be optimized to obtain more rapid
convergence, leading to optimized waveform relaxation algorithms (OWR). If we
divide the first equation in (10) by a and the second by 3, we see that @ and f3 rep-
resent resistances, and the new transmission conditions thus exchange both voltages
and currents at the interfaces. Note also that the classical transmission conditions
(3) become a special case when taking very large values of ¢ and 3.

Theorem 2 (Convergence factor for OWR with Overlap). The convergence fac-
tor of the OWR algorithm with n nodes overlap is

s~ () (T ()

Proof. The transmission conditions (10) can we rewritten as

k+1 k k+1 k

k1 _ Up Wha k+1 W k uj
Upiy = + Wiy — wp' =~ + g+ :
R T A B—1 " p—1

Proceeding with these values as in the proof of Theorem 1 then leads to (11).

We see that OWR contains an extra term in its convergence factor, compared to
classical WR, and with a good choice of & and f3 this term can be made smaller than
one and thus leads to better convergence. To obtain the best possible convergence,
we need to solve the min-max problem
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Igiél(msax|p0p,(s,a,b,a,[3)|). (12)

To simplify this min-max problem in the complex plane, the following Lemma is
useful:

Lemma 2. Letb <0,a >0, —b > 2a, o« > 0 and § < 0. Then the convergence factor
Popt(s,a,b, ¢, B) is an analytic function in the right half of the complex plane.

Proof. We need to show that the denominator of p,, (s,a, b, o, B) does not have any
zeros in the right half of the complex plane. We show this by contradiction. Assume
there is a zero. Then A; =0 or (14+ a)A; —1=0o0r 14 (B8 — 1)A; = 0. The first case
is not possible since under the given assumptions |A;| > 1. Considering the second
case we have A; = H% Since a > 0, |A1| = |1J%a\ < 1 which is a contradiction.
Similarly, the third case can not hold since 8 < 0, which concludes the proof.

Since popi(s,a,b,0,B) is analytic in the right half of the complex plane, i.e for
s =0+iw, o > 0, by the maximum principle for analytic functions, its maxi-
mum in modulus is attained on the boundary. Let s = r- ¢!, where r € [0,0)and
0 € [-7/2,7/2]. From the definition of A; given in Lemma 1, we observe that
n

lim, ;.. A = oo and hence im, ;. Py (5,a, b, ¢, B) = lim,_,.. (m) . (7112) _
0. Thus the maximum lies on the boundary when 6 = £7/2 and r < e, i.e. when
6 = 0. For o =0, one can show that |p,,(®,a,b, e, B)| is symmetric in o, and
hence it is sufficient to optimize the convergence factor for @ > 0. To simplify the
min-max problem further, we use the fact that in our RC circuit, both sub-systems
have very similar electrical properties. Since we assumed furthermore that all circuit
elements have the same value, it makes sense to choose 8 = —a, which can be in-
terpreted as having the same current flow between the subsystems, just into opposite
directions. Therefore, the min-max problem (12) simplifies to

min (rar)lgg |Popt (®,a,b, a)l), Popi(@,a,b, ) = (m)2~ (,1112)"

13)

Theorem 3 (Asymptotically optimized ). For an RC circuit of infinite length with
b= —(24¢€)a, where € — 0, the optimized parameter o* for n nodes overlap is

o = (5)1/3. (14)

n

Proof. This result can be proved using asymptotic analysis: one can show that the
solution to the min-max problem (13) is given by equioscillation when € — 0, i.e o¢*
satisfies | pops (@, a,b, 0¢*)| = |pop(0,a,b, ™) | and %pom((b,a,b, o*) =0 for some
interior maximum point @ > 0. The details are however too long and technical for
this short paper, and will appear in [2].
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- = =WR0
- - -WR1
- - -WR2
[——OWRO0
——OWR1
——OWR2

- --WR0
- - -WR1
- - -WR2
——OWR0
——OWR1
——OWR2

P N
5 10 15 20 25 30 15 20 25 30
Iteration Iteration

Fig. 3: Convergence for long time T = 1000. Fig. 4: Convergence for short time T = 2.

5 Numerical Results

We simulate an RC circuit of length N = 80 with R =0.5kQ, C = 0.63uF,a = %
and b = —(2+ €)a. We apply Backward Euler with A¢ = 0.1, and simulate directly
the error equations, starting with a random initial guess. In Figure 3, we show for
€ = 107* the influence of overlap on the convergence of classical and optimized
WR (e.g. WR2 means WR with overlap 2) for a long time interval (0,7), T = 1000.
We see that OWR converges much faster than classical WR, see also Figure 5 for a
theoretical comparison of the convergence factors. For a short time interval, 7 = 2,
classical WR is already very fast, see Figure 4. We determined the optimal choice of
o for these experiments solving the min-max problem (13) numerically. Next, we
compare this min-max approach with the asymptotic optimization for b = —(2 +
€)a from Theorem 3, and also with running the algorithm for many choices of a
numerically. Figure 6 shows that all three give similar results. Finally, we show in
Figure 7 and 8 a comparison of the convergence factors for the differently optimized
« for two choices of €.

1 60,
H % Min Max
— - —WRO0 % Asymptotic
0.9 23 -=-=WR1 M s Numerical
Sy - - ~WR2
08 | o E 50
X s £ OWRO

07 L AN . |—owRi

7T . ’ 2|—owr2| 1

0.6 -"/ Y fl \“\ RO 240

6F. .- b \ .. E]
E b ,,l /l “ s\\ ~ %

/ \ ]
0.5 F // K \ \\ §30
> - " <
04tz o . e
e \\

03 F . .. 20

02f--"" Tee o

0.1 10

05 0 05 0.1 0.2 0.3 0.4 0.5

Fig. 5: Effect of overlap Fig. 6: Comparison of the optimized &
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0.35 1

—WR — WR

T M Max . ---Min-Max |

- -- Asymptotic 0.9 - -- Asymptotic
0.3 —-- Nulmerical —-- Numerical

0.8
0.25

0.7

0.6
=

" 05

0.4

0.3f--—-—-__ |
0.05 ~_ & -
) 0.2] S
S 943 0.5

€o

Fig. 7: Convergence factor for optimized & Fig. 8: Convergence factor for optimized & by
by different methods for £ = 107", different methods for &€ = 107.

6 Conclusion

We studied here for the first time the influence of overlap on the convergence of
classical and optimized waveform relaxation algorithms for RC circuits. We defined
an optimization problem which permits to obtain a theoretically optimized parame-
ter leading to the fastest possible convergence of the optimized variant. Our analysis
shows that overlap enhances the performance of both algorithm variants, which we
also illustrated by numerical experiments. While the optimized variant converges
much faster when used on long time intervals compared to the classical one, for
short time intervals the optimization is less important. We finally compared numer-
ically three different approaches to obtain the optimized parameter in the transmis-
sion conditions, and observed that the three methods give similar parameters.
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Convergence of Substructuring
Methods for Elliptic Optimal Control
Problems

Martin J. Gander!, Felix Kwok?, and Bankim C. Mandal?

1 Introduction

We are interested in an Optimal Control Problem (OCP) where the constraint
is given by an elliptic partial differential equation (PDE):

=V (k(x)Vy(x)) = u(x) =€, (1)
y(z) =0 x € 0n.

The goal is to choose a control variable u from an admissible set U,q to
minimize the discrepan